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A generalized enhanced Fourier law (EFL) that accounts for quasi-
ballistic phonon transport effects in a formulation entirely in terms
of physical observables is derived from the Boltzmann transport
equation. It generalizes the previously reported EFL from a gray
phonon population to an arbitrary quasi-ballistic phonon mode
population, the chief advantage being its formulation in terms of
observables like the heat flux and temperature, in a manner akin to
the Fourier law albeit rigorous enough to describe quasi-ballistic
phonon transport. [DOI: 10.1115/1.4034796]

1 Introduction

Reports of significant room-temperature quasi-ballistic phonon
transport [1–3] have spurred modeling efforts [4–11] aimed at
explaining observed experimental results and predicting new
effects. Each approach has specific advantages in certain situa-
tions, resulting in a wide variety of mathematical formulations.
The aim of this paper is to derive a useful Fourier-like formula-
tion, which we term the generalized enhanced Fourier law.

Few analytical or semi-analytical phonon conduction models
exist that treat the full nonlinear Boltzmann transport equation
(BTE) [12]. Fully numerical solutions are outside the purview of
this paper. All models discussed here assume a reference tempera-
ture and hence a reference equilibrium Bose distribution function,
and assume the validity of the linearized BTE under the
relaxation-time approximation.

This paper is organized as follows: Section 2 surveys the cur-
rent literature on quasi-ballistic transport models; Sec. 3 derives
the generalized EFL and notes its correspondence with the semi-
nal work of Maznev et al. Section 4 summarizes our discussion.

2 Brief Survey of Major Quasi-Ballistic Transport
Frameworks

2.1 The Enhanced Fourier Law. Ramu et al. [8] proposed a
technique to arrive at the heat flux of a quasi-ballistic mode
directly from the BTE by truncating the spherical harmonic
expansion of the distribution function at the l¼ 2 order in angular
momentum. Since the heat flux is a physically more accessible
quantity than the distribution function, this formalism has certain
advantages over others, some of which are (a) the angular inte-
grals over distribution functions have already been performed,
and nonlocality of the quasi-ballistic heat flux emerges naturally,
(b) energy conservation is easier to enforce, and (c) modal sup-
pression functions may easily be derived, as exemplified in Sec. 3.

2.2 Chen’s Ballistic-Diffusive Equations and Series
Solution of Ordonez-Miranda et al. Chen’s ballistic-diffusive
equations [6] (BDEs) and Ordonez-Miranda et al. [7] recognize
that the homogenous Boltzmann equation is a damped advection
equation, to which a closed-form solution exists. For the inhomo-
geneous solution, while the BDE assumes the Fourier law, the
solution of Ordonez-Miranda et al. assumes a gray medium (con-
stant relaxation time for all modes) and expands the BTE solution
in a Taylor series in the spatial coordinate to arrive at a beyond-
Fourier constitutive law for the quasi-ballistic heat flux.

2.3 Weakly Quasi-Ballistic Solution of Maznev et al. and
Generalized BTE Solution of Hua and Minnich. In the context
of the transient grating experiment, Maznev et al. [4] presented an
exact BTE solution by taking the Fourier transform and writing
the set of coupled BTEs for each mode as an eigenvalue equation,
which was solved for the transient grating decay time. By compar-
ing the decay time with the Fourier law prediction, a correction
factor called the “suppression function” was derived, from which
the mean free path accumulation function [13] could be recovered
via a reconstruction technique [14].

Hua and Minnich [5] subsequently solved the full BTE semi-
analytically with an improved energy conservation equation that
takes into account the nonequilibrium modes instead of the usual
procedure of ignoring them and lumping the equilibrium modes
into a heat-capacity term.

They found two distinct transport regimes, namely, the weak
and strong quasi-ballistic regimes, depending on the relative mag-
nitudes of phonon-mode scattering lifetime and the overall ther-
mal decay time. Upon assuming the modal decay time to be much
less than the thermal time constant for decay of the transient gra-
ting, the solution of Maznev et al. automatically corresponds to
the weakly quasi-ballistic limit of Hua and Minnich.

2.4 The Models of Regner et al., Yang and Dames, and
Maassen and Lundstrom. Regner et al. [15] have proposed a
gray model (constant mean free path and constant velocity for all
modes). They truncate the spherical harmonic approximation of
the distribution function at the lowest nontrivial order, namely,
l¼ 1 as opposed to l¼ 2 of the enhanced Fourier law. In fact,
except for different boundary conditions, their formulation is
essentially the Cattaneo equation, as can be seen by introducing
the equilibrium Bose distribution in Eq. (7a) of that work and
summing over all modes. However, two counterpropagating heat
fluxes are separately solved for, which compensates for the low
order to which each is analyzed. The gray assumption makes it
difficult to compare with other approaches.

Yang and Dames [16] have used the Milne–Eddington approxi-
mation similarly to Ref. [15]; however, they have generalized
their treatment to a nongray population. Here again, introduction
of forward and reverse propagating heat fluxes compensates for
the low order of spherical harmonic expansion. But for the way
that the anisotropy of phonon population in k-space is handled,
the approach of Yang and Dames is similar to the EFL. Their for-
mulation has one advantage, namely, that boundary conditions
may be easily prescribed for one planar surface.

Maassen and Lundstrom [17–19] have utilized the
McKelvey–Shockley approach to derive a formulation of the BTE
where the central quantity is the heat flux. This heat flux is divided
into two counterpropagating components and the boundary condi-
tions are prescribed for each component. This formulation is capa-
ble of describing highly nonequilibrium transport; however, it has
only been studied for 1D transport between perfectly absorbing
(reflection-less) thermal contacts.

3 The Generalized Enhanced Fourier Law

The enhanced Fourier law (EFL), as presented previously in
Ref. [8], handles quasi-ballistic modes of a single mean free path.
It has utility in explaining the transient grating [20] and the
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frequency-domain thermoreflectance experiments [10,11]. Here,
we generalize it to handle arbitrary mean free path (MFP) spectra.
To do so, we track the original derivation of Ramu [8] until the
assumption of constant mean free path is made. The generaliza-
tion is necessary for meaningful comparison with the equations of
Maznev et al. who used a Fourier transform in both time and
space to reduce the set of BTEs for the phonon modes to an eigen-
value equation. The following discussion additionally derives a
generalized EFL, a differential equation for heat transfer by
modes of multiple MFPs. This is of vital importance to realistic
thermal modeling of silicon devices, because crystalline silicon
has a wide spectrum, with phonons of about three orders of mag-
nitudes in MFPs contributing significantly to thermal transport.
Although in this section we will be focusing on 1D transport,
Appendix A gives the equation in three dimensions, where a new
circulatory term (term with nonzero curl) arises. Furthermore,
although Fourier transforms in both spatial and temporal variables
will be used throughout the development so as to deal with purely
algebraic equations, the resulting expressions will be rational
polynomials in the transformed variables, and as such the inverse
transform may easily be taken to yield corresponding partial
differential equations.

The basis of the EFL is the assumption that quasi-ballistic
modes do not interact with each other due to the small phase-
space for such scattering [4], but can exchange energy with the
reservoir, which is assumed to exist at temperature T. We denote
the distribution function for quasi-ballistic modes as gðx; kÞ,
where all spatial variation is assumed to be along the x-direction,
and k is the phonon-mode wavevector of magnitude k and making
an angle h with the x-axis.

We expand the distribution function in terms of spherical
harmonics Plðcos hÞ. Spherical harmonics form a complete,
orthogonal basis for expanding angle-dependent azimuthally
symmetric functions [21]

gðx; k; tÞ ¼
X1

l¼0

glðx; k; tÞPlðcos hÞ (1)

For the sake of brevity, we henceforth suppress the ðx; k; tÞ
dependence wherever no ambiguity arises. Also, here and
henceforth, symbols in bold fonts denote vectors, while the same
symbols in normal fonts denote their magnitudes.

We first derive the equation for phonon modes of wavevector
magnitude k, lifetime sðkÞ, and group-velocity magnitude vðkÞ.
The frequency of a quasi-ballistic mode of wavevector k is
denoted by xðkÞ. We also assume isotropic phonon dispersion, so
that v ¼ vðk=kÞ. The time-dependent linearized BTE for the
quasi-ballistic modes is then given by

v cos h
@g x; k; tð Þ

@x
þ @g x; k; tð Þ

@t
¼ % g x; k; tð Þ % fEq x; k; Tð Þ

s
(2)

We have earlier assumed the existence of a local temperature T
and thereby a corresponding spherically symmetric equilibrium
distribution, familiar from Bose statistics: fEqðx; k;TÞ ¼
fEqðx; k; TÞ & fEqðTÞ. This local temperature is established by
some high-capacity reservoir. Equation (2) is the quasi-ballistic
mode BTE in the absence of source terms; thus, we assume that
no external source of heat couples to the quasi-ballistic modes.
We begin with the observation that, owing to the orthogonality of
the spherical harmonics [21], the x-component of the quasi-
ballistic heat flux is determined solely by the first spherical
harmonic g1

Q x; tð Þ ¼ 2p
X

k

ðp

h¼0

!hxg x; k; tð Þv cos h sin hdh

¼ 4p
3

X

k

!hxvg1 x; k; tð Þ (3)

This may be seen by substituting Eq. (1) for gðx; k; tÞ in the
integrand and applying orthogonality of the spherical harmonics.
Specifically, cos h is the l¼ 1 spherical harmonic, and since all
other spherical harmonics are orthogonal to it, only the l¼ 1 term
survives. Therefore, we seek a differential equation for g1. Here
and henceforth,

P
kIðkÞ is shorthand for ½1=ð2pÞ3(

Ð
dkIðkÞk2 where

IðÞ is any function of k, and the integral is over all quasi-ballistic
mode wavevector magnitudes.

Highly nonequilibrium transport in electron gases has been
investigated analytically by Baraff [22]; we adopt his approach.
First, we take the Fourier transform in time of Eq. (2), with trans-
form variable c. Substituting Eq. (1) into the Boltzmann transport
equation (Eq. (2)), multiplying successively by Pl0ðcos hÞsin h for
l0 ¼ 0; 1; 2;…, and integrating over h, we arrive at a hierarchy of
coupled equations for the gl s [22]; the first three of which are

1

3
v
@g1

@x
þ g0

~s
%

fEq Tð Þ
s
¼ 0 (4a)

2

5
v
@g2

@x
þ v

@g0

@x
þ g1

~s
¼ 0 (4b)

3

7
v
@g3

@x
þ 2

3
v
@g1

@x
þ g2

~s
¼ 0 (4c)

Here, ~s is given by ð1=~sÞ ¼ ð1=sÞ þ jc where, as before, c is the
Fourier transform variable in time, and j is the imaginary unit. We
truncate the hierarchy at the second order by setting g3 ¼ 0; other
truncations are possible [22]. The generalization of Eq. (4) to
arbitrary order in spherical harmonics is given in Appendix A.
Therefore, this is the leading approximation beyond the Fourier
law, which consists of setting g2 ¼ 0. Substituting Eq. (4c) into
Eq. (4b) to eliminate g2, and the result into Eq. (4a) to eliminate
g0, we arrive at an equation solely in terms of g1

% 3

5
vsð Þ2

@2g1

@x2
þ vs

@fEq Tð Þ
@x

þ 1þ jcsð Þ2g1 ¼ 0 (5)

where fEqðTÞ depends on x only through T, enabling the
replacement

@fEq Tð Þ
@x

¼
@fEq Tð Þ
@T

@T

@x

We make the substitution here of vðkÞsðkÞ ¼ KðkÞ, the
k-dependent MFP of quasi-ballistic phonons, to yield

% 3

5
K2 @

2g1

@x2
þ K

@fEq Tð Þ
@T

@T

@x
þ 1þ jcsð Þ2g1 ¼ 0 (6)

This is the point of departure from the original EFL. Taking the
spatial Fourier transform G1ðv; k; cÞ of g1ðx; k; cÞ with transform
variable v replacing x, and rearranging, we get

G1 v; k; cð Þ ¼
%jK

@fEq Tð Þ
@T

vT

1þ jcsð Þ2 þ
3

5
K2v2

(7)

Using Eq. (3), we arrive at

Q v; cð Þ ¼ %jvT

ðkmax

k¼0

1

3
C kð Þv kð ÞK kð Þ

1þ jcsð Þ2 þ
3

5
K2v2

dk

¼ %jvT

ðkmax

k¼0

jdiff kð Þ

1þ jcsð Þ2 þ
3

5
K2v2

dk (8)

where the differential heat capacity with respect to k is

CðkÞ ¼ ½1=ð2pÞ3(4p!hxðkÞ½ð@fEqðTÞÞ=@T(k2, and the differential
thermal conductivity is jdiffðkÞ ¼ ð1=3ÞCðkÞvðkÞKðkÞ. Equation
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(8) is equation of the generalized EFL for the Fourier transform of
the net heat flux.

If we interpret v as the inverse spatial period in the transient
grating experiment (although this is unnecessary—see
Appendix B), and restrict ourselves to such small phonon life-
times that cs) 1, it is seen that Eq. (8) is of the same form as
Eq. (18) of Maznev et al. Specifically, the “correction factor” or
suppression function of their work [4], AMaznevðvKÞ ¼ ½3=ðv2K2Þ(
f1% ½ðarctanðvKÞÞ=vK(g is replaced by AEFLðvKÞ ¼ 1=f1þ
½ð3=5Þ K2v2(g. Figure 1 compares the two functions for a broad
range of values of vK, and it is seen that they match very closely.
Since the work of Maznev et al. treats the exact two-channel
BTE, the truncation to the second order of our spherical harmonic
expansion gives very small errors indeed.

The main limitation of the EFL stems from the fact that it corre-
sponds to a second-order spherical harmonic expansion of the pho-
non distribution function. Clearly by ignoring higher orders, it
cannot describe the strong quasi-ballistic ballistic transport regime
of Hua and Minnich. Thus, the EFL is not recommended for situa-
tions where the overall time constant of the experiment is expected
to be on the order of the phonon lifetime. Finally, it is to be noted
that the EFL is simply a constitutive equation for the heat flux. It is
necessary to combine it with energy conservation and solve with
appropriate boundary conditions to yield the temperature profile.

4 Conclusions

The enhanced Fourier law has been derived and generalized
from a gray phonon population to an arbitrary one. The resulting
suppression function for the effective thermal conductivity in the
transient grating experiment has been shown to closely approxi-
mate results of Maznev et al. in the weakly quasi-ballistic trans-
port regime. The chief advantage of the EFL is seen to be its
formulation in terms of observables like the heat flux and temper-
ature, akin to the Fourier law but rigorous enough to be capable of
describing quasi-ballistic phonon transport. This feature is highly
attractive in the context of simple explanations of quasi-ballistic
transport experiments like the transient grating and frequency-
domain thermoreflectance experiments, and is likely to promote
physically accurate device thermal simulations.
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Nomenclature

A ¼ suppression function
BDE ¼ ballistic-diffusive equations
BTE ¼ Boltzmann transport equation
C(k) ¼ differential heat capacity with respect to k

Cv ¼ heat capacity of all phonon modes, J/kg K
EFL ¼ enhanced Fourier law

fEq ¼ Bose equilibrium distribution function
gðx; kÞ ¼ distribution function for quasi-ballistic modes

G ¼ spatial Fourier transform of g
!h ¼ Planck’s constant, J s
j ¼ imaginary unit
k ¼ phonon-mode wavenumber, m%1

K ¼ modified Bessel function of the second kind
l ¼ angular momentum quantum number

MFP ¼ mean free path
Pl ¼ spherical harmonic of order l

Q(x) ¼ net heat flux
t ¼ time, s

T ¼ temperature, K
v ¼ group-velocity magnitude
r ¼ gradient operator
h ¼ angle of wavevector with respect to transport axis
j ¼ thermal conductivity, W/m K

Ki ¼ mean free path of phonon mode indexed by “i”
si (k) ¼ lifetime of a mode indexed by i with wavevector

magnitude k, s
v ¼ transformation of “x” coordinate variable, m
x ¼ angular frequency

Appendix A

Here, we suggest ways of generalizing the one-dimensional
analysis and generalize the EFL to three spatial dimensions.

Although we have truncated the spherical harmonic expansion
of the distribution function at the l¼ 2 order, it is possible to gen-
eralize to arbitrary order. Equations (4a)–(4c) are part of a hierar-
chy of equations, the lth equation of which is, for l> 0 [22]

lþ 1

2lþ 3
v
@glþ1

@x
þ l

2lþ 1
v
@gl%1

@x
þ gl

~s
¼ 0 (A1)

Of course, increasing the number of equations in the hierarchy
improves the accuracy of the model. However, this will result in a
differential equation of higher order, requiring more boundary
conditions than can be deduced from the physics of the problem.

In three dimensions, the equations of the generalized EFL and
energy conservation take the following form [23]:

1þ si
@

@t

# $2

qi ¼ %jirT þ 3

5
KLF

i

% &2r r * qið Þ

% 1

5
KLF

i

% &2r+ r+ qið Þ (A2)

r *
X

i

qi

# $
¼ %Cv

@T

@t
(A3)

where qi is the low-frequency quasi-ballistic mode indexed by i, Ki

is its mean free path, ji is the kinetic theory value of the each mode’s
thermal conductivity, T is the temperature, si is the lifetime of pho-
nons in the ith channel, and Cv is the heat capacity of all phonon
modes combined. Although Ramu and Bowers [23] derived this
equation starting from the steady-state BTE, extension to time-
dependent BTE is simple using Fourier transforms, as illustrated in
Sec. 3. The last term of Eq. (A2) is a circulatory term. Inclusion of
this term requires knowledge of the tangential heat flux at the

Fig. 1 Suppression functions of Maznev et al. [4] and this
work (see Eq. (8)) match very closely over a large range of
values of vK
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surface, which is not available except for white, specular boundaries.
The physics of this term has only recently been touched upon [24]
and we will not concern ourselves with it in this paper.

Appendix B

Although periodicity in space has been applied to test our
expressions against the benchmark of Maznev et al., it is by no
means necessary— inverse Fourier transforms yield the requisite
differential equations in cases where there are boundaries present
and the conditions there need to be considered. Our formulation
has the important advantage of yielding families of generalized
Fourier laws of various finesse since AEFLðvKÞ is the ratio of
rational polynomials. To wit, we use this formulation to generate
a generalized EFL for a material whose MFP spectrum can be
decomposed into a high-frequency (HF) channel and two low-
frequency (LF) channels.

To this end, consider a cut-off mean free path KF ¼ KðkFÞ such
that K2v2 ) 1 for all length scales 1=v of interest and all K < KF.
For K , KF, let the differential conductivity be given by

jdiffðkÞ ¼ Dj1dðK% KFÞ þ Dj2dðK% K2Þ (B1)

where d is the Dirac delta function.
Substituting Eq. (B1) in Eq. (8) and simplifying, we get

1þ 3

5
K2

Fv2

# $
1þ 3

5
K2

2v
2

# $
Q vð Þ þ ivTjF
% &

¼ Dj1 %ivTð Þ 1þ 3

5
K2

2v
2

# $
þ Dj2 %ivTð Þ 1þ 3

5
K2

Fv2

# $

(B2)

where using the assumption K2v2 ) 1, we have defined

jF ¼
ðkF

k¼0

jdiff kð Þ

1þ 3

5
K2v2

dk -
ðkF

k¼0

jdiff kð Þdk (B3)

We may easily take the inverse Fourier transform of Eq. (B3).
Discarding fourth-order derivatives with respect to x, we get

Q xð Þ ¼
3

5
K2

2 þ K2
F

% & @2Q

@x2
% jbulk

@T

@x

þ 3

5
K2

F jbulk % Dj1ð Þ þ K2
2 jbulk % Dj2ð Þ

' ( @3T

@x3
(B4)

where jbulk ¼ jF þ Dj1 þ Dj2 is the bulk thermal conductivity,
the sum of all phonon contributions. The generalization of
Eq. (B4) to an arbitrary number of quasi-ballistic channels may be
performed along similar lines.
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