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A recently developed enhanced Fourier law is applied to the problem of extracting thermal

properties of materials from frequency-domain thermoreflectance (FDTR) experiments. The heat

transfer model comprises contributions from two phonon channels: one a high-heat-capacity diffuse

channel consisting of phonons of mean free path (MFP) less than a threshold value, and the other a

low-heat-capacity channel consisting of phonons with MFP higher than this value that travel quasi-

ballistically over length scales of interest. The diffuse channel is treated using the Fourier law,

while the quasi-ballistic channel is analyzed using a second-order spherical harmonic expansion of

the phonon distribution function. A recent analysis of FDTR experimental data suggested the use

of FDTR in deriving large portions of the MFP accumulation function; however, it is shown here

that the data can adequately be explained using our minimum-parameter model, thus highlighting

an important limitation of FDTR experiments in exploring the accumulation function of bulk

matter. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923310]

The thermoreflectance class of experiments1 has contrib-

uted immensely to our understanding of heat transport on

length-scales on the order of the mean-free path (MFP) of pho-

nons, the primary carriers of heat in semiconductor crystals.2–8

The mean-free path accumulation function (MFPAF) intro-

duced by Dames and Chen9 is a powerful tool in studying bal-

listic phonon transport. The MFPAF at a given mean-free path

K is defined as the effective thermal conductivity (ETC) con-

tributed by all phonons with mean-free paths less than or equal

to K. The MFPAF is a unified framework10 that explains

diverse experiments, like the transient gratings,11 time-domain

thermoreflectance (TDTR), and frequency domain thermore-

flectance (FDTR) experiments,4,5 that probe heat transport on

length scales comparable to the phonon mean-free path.

Considering the utility of the MFPAF in explaining

length-dependent conductivity measurements in crystalline,4

amorphous12 and nanostructured materials13–15 and at thermal

interfaces,6 it comes as no surprise that its experimental

extraction is the subject of intense research. Recently, it has

been suggested by Regner et al.4 that a large portion of the

MFPAF of crystalline materials (e.g., between 0.4 and 0.95

times the bulk thermal conductivity of crystalline Si at room

temperature) may be deduced from FDTR measurements cov-

ering modulation frequencies ranging from 200 kHz to

200 MHz. In this work, we demonstrate that the experimental

data of Ref. 4 can be well explained by a compact model con-

sisting of only two phonon channels, as opposed to an entire

spectrum of MFPs. This supports our recent demonstration16

of a fundamental arbitrariness in the procedure for MFPAF

extraction from FDTR experiments propounded by Koh and

Cahill.2

We first describe the theory behind our model, the

enhanced Fourier law (EFL), and adapt the equation to the

conditions of the FDTR experiment. To this end, we solve the

EFL in axisymmetric cylindrical coordinates, and explain the

boundary conditions applied in the solution. We then compare

the predictions of this model to FDTR experiments and show

that excellent fit may be obtained using a simple two-channel

approach with only a single MFP for the quasi-ballistic

modes, thus contraindicating the use of FDTR experiments for

determining the MFPAF.

We apply the enhanced Fourier law (EFL) developed by

one of the authors17 to the FDTR experiment after generaliz-

ing it to three spatial dimensions. This model is eminently

suited to the problem at hand because: (a) It is closely related

to the Fourier law, it being a differential formulation of non-

Fourier heat transport consisting of both Fourier law terms

and higher order correction terms. Thus, most of the mathe-

matical apparatus built for solving Fourier law in various

coordinate systems can be applied with a few modifications,

as shown in this paper for the cylindrical axisymmetric sys-

tem. (b) Rigorous derivation17 from the Boltzmann transport

equation (BTE) gives physical meaning to various parame-

ters, instead of treating them as phenomenological fitting pa-

rameters, and (c) the EFL is formulated in terms of the

mean-free path of low-frequency modes.

The basis of this model of thermal transport is the “two-

fluid” assumption.18 Here, the phonon spectrum is divided into

two parts: One—a high-heat-capacity, high-frequency (HF)

part that is in quasi-thermal equilibrium with a well-defined

local temperature, and the other—a low-frequency (LF), low-

heat-capacity part that is farther out of equilibrium. The LF

modes do not interact with each other due to the small phase-

space for such scattering,19 but can exchange energy with the

HF modes. The HF part of the phonon spectrum corresponds to

zone-boundary phonons, which frequently undergo Umklapp

scattering. The LF mode phonons, due to their small wave-

vectors, chiefly participate in momentum conserving three-

phonon processes involving two other HF-mode phonons.19
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The theory of the one-dimensional EFL17 is based on

spherical harmonic expansions of the phonon distribution

functions, wherein the high-frequency mode distribution

function is truncated at the first order in the expansion, while

the low-frequency mode distribution function, which is far-

ther out of thermal equilibrium, is truncated at the second

order. The EFL, which may be viewed as a non-local refine-

ment of the Fourier law, is extended to three dimensions by

noting that under the isotropic assumption, the heat-flux (a)

must be composed exclusively of coordinate-invariant com-

ponents, and (b) must reduce to the one-dimensional Fourier

law when the temperature gradient is uniform in any direc-

tion. Ignoring the rotational (solenoidal) component of the

heat-flux,25 we arrive at the following set of equations, where

symbols in bold font represent vectors, while those in normal

font their magnitudes or other scalars. For rigorous deriva-

tion of these equations from the Boltzmann transport equa-

tion, the interested reader is referred to Ref. 25.

r � q ¼ �Cv
@T

@t
þ SHF r; tð Þ; (1)

q ¼ 3

5
KLFð Þ2r r � qð Þ þ 3

5
jHF KLFð Þ2r r2Tð Þ � jrT: (2)

Here, the net heat-flux q¼ qLFþ qHF, qLF¼ the LF-mode

contribution to the heat-flux, qHF¼ the HF-mode contribu-

tion to the heat-flux; Cv is the volumetric heat capacity;

SHFðr; tÞ¼ spatially and temporally varying external heat

source term; T¼ local temperature of HF modes; j is the net

bulk thermal conductivity; j¼jLF þ jHF, jHF¼ the contri-

bution of HF modes to the bulk thermal conductivity,

jLF¼ the contribution of LF modes to the bulk thermal con-

ductivity; and KLF¼ the MFP of the LF modes¼ vs, where v
is the group-velocity magnitude of all LF modes and s¼LF

mode lifetime. We assume that each and every LF mode has

the same lifetime s, as well as the same group-velocity mag-

nitude v, and therefore the same MFP given by KLF. We also

state three-dimensional equations for the LF mode and HF

mode heat-fluxes qHF and qLF separately

qLF ¼ 3

5
KLFð Þ2r r � qLF

� �
� jLFrT; (3)

qHF ¼ �jHFrT: (4)

Fig. 1 shows a schematic of the MFPAF corresponding to

our model. Modes with mean-free path less than KLF are

assumed to travel diffusively, thus following the Fourier law.

The exact shape of the accumulation function for this region

is unknown—it must be stressed that Fig. 1 is schematic.

However, their thermal properties are aggregated into a sin-

gle thermal conductivity jHF. Since we model all LF modes

with the same mean-free path KLF, the remainder of the bulk

thermal conductivity, namely, jLF ¼ j� jHF, is lumped at

the mean-free path of KLF, and the MFPAF does not accu-

mulate any further for longer mean-free paths.

In the FDTR experiment of Ref. 4, a thin (62 nm) Au/Cr

transducer layer is used as the heater (by the application of a

pump laser beam) and as a thermometer (by the application

of a probe laser beam that monitors surface reflectivity,

which is a function of temperature). This transducer is

deposited directly on the surface of the substrate to be

measured. Combining Eqs. (1) and (2) and transforming to

the frequency domain, we arrive at an enhanced heat equa-

tion for the substrate, which has no heat generation within

(SHFðr; tÞ ¼ 0)

�jxCvT ¼ �jx
3

5
Cv KLFð Þ2r2T

þ 3

5
jHF KLFð Þ2r2 r2Tð Þ � jr2T: (5)

In cylindrical polar coordinates, enormous simplification of

the biharmonic term r2ðr2TÞ in this equation is obtained by

the introduction of the Hankel transform ~T of the tempera-

ture T, defined as

~Tðk; zÞ ¼
ð1

0

Tðr; zÞrJ0ðkrÞdr: (6)

Here, J0 represents the ordinary Bessel function of the first

kind. Noting crucially that r2 ! �k2 þ @2

@z2 in the Hankel

domain, we obtain a fourth-order ordinary differential equa-

tion in z for ~T . Solving this by the method of characteristic

polynomials, and discarding roots with positive real parts

since the substrate is semi-infinite, we obtain a solution of

the form

~T ¼ AðkÞep1z þ BðkÞep2z; (7)

where p1 and p2 are the characteristic roots with negative

real parts. Coefficients A and B are determined by applying

the following boundary conditions: (a) Net heat-flux in the

substrate given by the sum of Eqs. (3) and (4) is equal to

total heat fluxed by the Au/Cr transducer, and (b) the HF

mode heat-flux in the substrate, Eq. (4), is also equal to the

total heat fluxed by the Au/Cr transducer. In other words, the

transducer does not directly transfer heat to the LF modes of

the substrate. Instead, the HF modes are excited first and

then transfer energy to the LF modes through three-phonon

FIG. 1. Schematic of three-parameter mean-free path accumulation function

used in the modeling.
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processes.20 This is a reasonable assumption because of the

proportionality of scattering rates to the density of final

states,21 which is much higher for HF modes than for LF,

which in turn follows from the two-fluid assumption stated

earlier.

The ordinary Fourier law is used in the 54 nm/9 nm Au/

Cr transducer, instead of the isothermal assumption of

Ref. 4. For modeling purposes, the Au and Cr materials are

combined into one material of effective thickness 62 nm and

effective thermal conductivity 110 W/m-K. The boundary

between the transducer and the substrate is modeled as an ab-

rupt interface with a boundary conductance G to be extracted

from experimental data. The pump and probe laser inten-

sities are modeled as Gaussian distributions with spot sizes

given by the 1/e2 radii at the beam waist. The solution of the

ordinary Fourier law in cylindrical axisymmetric coordinates

follows the usual procedure,22 and the surface temperature is

extracted as the inverse Hankel transform of ~T at the top sur-

face of the transducer

Tðr; zÞ ¼
ð1

0

~Tðk; zÞkJ0ðkrÞdk: (8)

Our compact model consists of three material parameters, as

shown in Fig. 1: the bulk thermal conductivity, j; the contri-

bution of HF modes to the thermal conductivity, jHF; and a

single LF mode mean-free path KLF. In addition, the bound-

ary thermal conductance G is an experimentally determined

parameter. Since the pump laser’s 1/e2 radius (3.4 lm) is on

the same order as the LF-mode phonon mean-free path, the

cylindrical axisymmetric geometrical model of this work

is strongly indicated, as opposed to one-dimensional

models.16,19 The FDTR experimental data consist of the

phase of the surface temperature oscillation plotted as a func-

tion of frequency between �200 kHz and 200 MHz. The

phase is used because it is relatively insensitive to fluctua-

tions in laser power.8

Fig. 2 shows the excellent fit obtained with our compact

EFL-based model for the FDTR experiment conducted

on bulk crystalline Si at 300 K. The parameters are (a)

j¼ 170 W/m-K, which is reasonable for the thermal conduc-

tivity of bulk Si, (b) threshold mean-free path¼ 1.5 lm, and

(c) jHF¼ 60 W/m-K; this means that only 40% of the heat in

silicon is carried by phonons with MFPs below the threshold

value, 1.5lm. The best fit is obtained with G¼ 230 MW/m2-K,

in rough agreement with Ref. 4. The rest of the parameters,

namely, the heat capacity of bulk Si and the Fourier law

parameters for the transducer are taken from Regner et al.4

It seems untenable to extract any more information reli-

ably from this dataset. However, Regner et al. have divided

the frequency range (60 frequencies evenly spaced on a log

scale that spans 200 kHz to 200 MHz) into overlapping win-

dows of 13 points each, and fitted the phase in each window

to the Fourier law to extract an effective thermal conductiv-

ity (ETC). Each frequency corresponds to a certain thermal

penetration depth, given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jef f =2xCv

p
, where jef f is the

ETC at that frequency, x, and Cv is the volumetric heat

capacity. They assume that phonons with MFP greater than

the thermal penetration depth (TPD) travel ballistically

across the thermalized region and are therefore lost to the

experiment. Thus, the TPD at each frequency is used as the

cut-off MFP. By plotting the ETC vs. cut-off MFP, they

determine the accumulation function. Thus, it may be seen

that Regner et al. effectively use 48 fitting parameters, in

addition to the boundary thermal conductance. This is in

sharp contrast to our procedure, which uses merely 4 fitting

parameters, displayed in Figs. 2 and 3.

As we have noted in Ref. 16, one source of arbitrariness

in this procedure lies in the abruptness of the TPD cut-off

that phonons go from being entirely diffusive to entirely bal-

listic as their MFP crosses the TPD. In reality, phonons with

MFP of the order of the TPD travel quasi-ballistically, some-

what equilibrating with the thermalized region during their

flight (completely ballistic phonons do not equilibrate at all,

while diffusive phonons equilibrate entirely with the lattice,

within the thermalized region that extends to a depth equal

to the TPD). Using a different and more realistic criterion for

classifying phonons as ballistic or diffusive, we have

obtained a drastically different MFP accumulation function

from the same data.16 We note here that an explanation of

the results of Regner et al. based on just the Fourier law,

FIG. 2. Phase vs. frequency plot for crystalline Si at 300 K. Experimental

data are after Regner et al.4 The model parameters are shown in the inset

(please see Fig. 1); G is the interfacial conductance between the transducer

and the Si substrate.

FIG. 3. Phase vs. frequency plot for crystalline Si at 400 K. Experimental

data are after Regner et al.4
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without invoking ballistic phonon effects, has been offered

without experimental proof by Ref. 23. Specifically, it has

been assumed that the entire pump laser heat is deposited in

the Cr adhesion layer. However, it is well known that signifi-

cant quasi-ballistic effects occur at micron scales in Si at

300 K (Ref. 24) and any model that ignores this fact is, in

our opinion, largely incomplete. Our aim here is to introduce

the cylindrical-polar solution of the EFL, and to offer there-

from an alternate and minimalistic interpretation of the data

that is in keeping with the spirit of Regner et al.
At 400 K, however, the fit is not as good, with the best-

fit parameters shown in Fig. 3. The larger deviation at high

frequencies—where the thermal penetration depth, and

therefore the MFP of dominant phonon modes, is smaller—

suggests the need for a second LF channel of smaller MFP to

explain the results. In both cases, 300 K and 400 K, the

Fourier law is seen to be quite inadequate in explaining the

data, in agreement with Ref. 4.

In conclusion, we have demonstrated an excellent fit of

the phase vs. frequency data from FDTR experiments with

the smallest possible parameter set. It is seen that while the

Fourier law is too crude to explain the room-temperature

data, adding a single MFP channel improves the fit to the

point where further improvement is not meaningful; thus, no

more information may be extracted from the experiment

than has been done in this work, contradicting the report of

Regner et al.,4 who extracted a large portion of the MFPAF

from the same dataset.
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