INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






UNIVERSITY OF CALIFORNIA
Santa Barbara

Current Injection in
Semi-Insulating Indium Phosphide

A dissertation submitted in partial satisfaction
of the requirements of the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

by

Patricia J. Corvini

Committee:
Professor John E. Bowers, chairman
Professor Larry A. Coldren
Professor Arthur C. Gossard
Professor Herbert Kroemer

November 1995



UMI Number: 9617646

Copyright 1995 by
Corvini, Patricia J.

All rights reserved.

UMI Microform 9617646
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



The dissertation of Patricia J. Corvini
is approved:

P I

Professor Herbert Kroemer

Bedbiese C

Professor Arthur C. Gossard

figy -

Professor/lfar?ry A. Coldren

C ot £ i

PWSM John E.“Bowers, chairman

December 1995

ii



Current Injection in
Semi-Insulating Indium Phosphide

Copyright © by
Patricia J. Corvini
All rights reserved

November 1995

Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, California 93106

ii



Acknowledgements

I thank the faculty—especially John Bowers, Larry Coldren, Steve Den-
Baars, Art Gossard, Evelyn Hu, Herb Kroemer and Umesh Mishra—for their
advice and support.

I thank Majid Hashemi for his help in the early days of this project. It
was he who introduced me to Lampert & Mark.

I thank Scott Corzine for showing me how to do the numerical solution.
I thank Karl Hess for his advice on how to treat field emission.

. For their help and for keeping the lab running, I thank the past and
present members of the MOCVD group, especially Casper Reaves, Archie
Holmes, Mark Heimbuch, and Bernd and Stacia Keller.

For processing advice and for help in the cleanroom, I thank Dubravko
Babic, Dan Cohen, Weinan Jiang, Mark Mondry, Radha Nagarajan, Nguyen
Nguyen, Madhukar Reddy, Gerry Robinson, Ralph Spickermann, Eva Strz-
elecka, Dan Tauber, Jack Whaley, Torsten Wipiejewski, and Don Zak.

For help with measurements, I thank James Ibbetson, Weinan Jiang,
David Mui, Primit Parikh, Tom Reynolds, and Martin Vandenbroek.

In addition to those mentioned above, I thank the following for helpful
discussions and for advice on a variety of topics: Dieter Bimberg, Peter Blixt,
Forrest Brewer, Heng Chu, Gottfried Déhler, Jim Dudley, Julie Fouquet, En-
rique Gomez, Anish Goyal, Masayoshi Horita, Collin Jones, Judy Karin, Steve
Koester, Steve Long, Sebastian Lourdudoss, Mike Ludowise, Alan Mar, Rich
Mirin, Pierre Petroff, Manfred Pilkuhn, Paul Pinsukanjana, Rajeev Ram, Hu-
bert Scheffler, Harry Wieder, and Bob York.

iv



I thank those who read and commented on early drafts of parts of this
work, especially Evelyn Hu, Rajeev Ram, and James Ibbetson.

The calculations were run on a Mac Ilci and on an HP Series 735 worksta-
tion. For their help with the operation of the laiter, I thank Rajeev Ram, Tom
Marazita, Terry Light, and Jacques Girod. For help with assorted graphics
packages, I thank Kehl Sink and Gary Wang.

Data from I-V measurements was read with an HP Vectra PC. For help
with DOS and with HP Basic, I thank Dubravko Babic, Forrest Brewer, Hal
Morrett, and especially Kursad Kiziloglu.

This document was prepared using IATgX. For help with this, I thank An-
ish Goyal, Claudia Leufkens, Anders Petersen, Casper Reaves, Mark Rodwell,
and Bob York. I especially thank Claudia for the use of her machine.

I thank Umesh Mishra and Bob York for the use of their lab; Weinan
Jiang, Matt Peters, and Willy Yin for the use of their masks; Paul Pinsukan-
jana for the use of his calibration resistors; and James Ibbetson for the use of
his Hall-measurement sample holder.

I thank John Turner of Hewlett Packard for the SIMS measurements men-
tioned in Chapter 3. SIMS measurements mentioned in Chapter 6 were per-
formed by Jon Erickson of Charles Evans & Associates.

This work was supported in part by ARPA through its Optoelectronics
Technology Center.



To the memory of

Edmund J. Corvini
1918 - 1991

and

Rudolph L. Corvini
1914 - 1993



1958
1978-1980

1983

1983-1988

1988

1990-1995

1995

. P. Corvini, A. Kahn, and S. Wagner, “Surface order and stoichiometry of
sputter-cleaned and annealed CulnSe,,” J. Appl. Phys. 57, 2967 (1985).

. A. Kahn, P. Corvini, S. Wagner, and K. J. Bachmann, “First investiga-
tion of the atomic structure of (112) and (112) CulnSe, surfaces,” Solar

Vita

Born 14 September at Ithaca, New York

Electronics technician
Department of Mechanical and Aerospace Engineering
Princeton University, Princeton, New Jersey

B.S.E., Electrical Engineering and Computer Science
Princeton University

Senior Technical Associate, Member of Technical Staff
Electrophotonics Research Department
AT&T Bell Laboratories, Holmdel, New Jersey

M.S., Materials Science
Stevens Institute of Technology, Hoboken, New Jersey

Research assistant
Department of Electrical and Computer Engineering
University of California, Santa Barbara

Ph.D., Electrical and Corhputer Engineering
University of California, Santa Barbara

Publications

Cells 16, 123 (1986).

. T. L. Koch, L. A. Coldren, T. J. Bridges, E. G. Burkhardt, P. J. Corvini,
and D. P. Wilt, “1.55 um high speed vapor phase transported buried

heterostructure lasers (VPTBH),” Electron. Lett. 20, 856 (1984).

vii



o>

10.

11.

. T. L. Koch, L. A. Coldren, T. J. Bridges, E. G. Burkhardt, P. J. Corvini,
and D. P. Wilt, “1.5 um monolithic shallow-groove coupled-cavity vapor

phase transported buried heterostructure lasers,” Electron. Lett. 20, 1001
(1984).

. T. L. Koch, T. J. Bridges, E. G. Burkhardt, R. A. Logan, L. F. Johnson,
R. F. Kazarinov, R. T. Yen, L. A. Coldren, P. J. Corvini, R. A. Linke,
and W. T. Tsang, “1.55 um InGaAsP distributed feedback vapor phase
transported buried heterostructure lasers,” Appl. Phys. Lett. 47, 12 (1985)

T. L. Koch and P. J. Corvini, “Studies of high-bit-rate dispersive optical
fiber transmission using single-frequency lasers,” paper TUF-3, Confer-
ence on Optical Fiber Communication, Atlanta, 1986.

. P. J. Corvini and T. L. Koch, “Computer simulation of high-bit-rate op-
tical fiber transmission using single frequency lasers,” IEEE J. Lightwave
Tech. LT-5, 1591 (1987).

P. J. Corvini and T. L. Koch, “Asymmetry of calculated chirp-induced
dispersion penalty for wavelength variations about 1.3 ym,” unpublished
(1987). ‘

T. L. Koch and P. J. Corvini, “Semiconductor laser chirping-induced
dispersive distortion in high-bit-rate optical fiber communications sys-
tems,” summary for invited talk at ICC '88, Philadelphia. In: IEEE
International Conference on Communications '88: Digital Technology—
Spanning the Universe. Conference Record, vol. 2, p. 584; IEEE, New
York, 1988.

T. L. Koch, P. J. Corvini, G. D. Boyd, M. A. Duguay, and W. T. Tsang,
“Line-narrowed 1.55 pym VPT-DFB lasers using vertically self-aligned
Si-Si0; ARROW cavities,” paper I-4, Tenth IEEE International Semi-
conductor Laser Conference, Kanazawa, Japan, 1986.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay,
“Anti-resonant reflecting optical waveguides for III-V integrated optics,”
Electron. Lett. 23, 244 (1987).

viii



12

13.

14.

15.

16.

17.

18.

19.

20.

. T. L. Koch, W. T. Tsang, and P. J. Corvini, “Spectral dependence of
propagation loss in InP/InGaAsP anti-resonant reflecting optical wave-

guides grown by chemical beam epitaxy,” Appl. Phys. Lett. 50, 307
(1987).

T. L. Koch, E. G. Burkhardt, F. G. Storz, T. Sizer, W. T. Tsang, U. Ko-
ren, and P. J. Corvini, “Interlayer directionally grating-coupled ARROW
structures for III-V integrated optoelectronics,” paper TUCI1, Topical
Meeting on Semiconductor Lasers, Albuquerque, 1987.

T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, and B. I. Miller,
“Wavelength-selective interlayer-directionally grating-coupled InP/
InGaAsP waveguide photodetection,” Appl. Phys. Lett. 51, 1060 (1987).

P. J. Corvini, L. Eichner, and A. B. Piccirilli, “HBr:HNO3:H2O etching
characteristics for holographic gratings,” unpublished (1986).

T. L. Koch, P. J. Corvini, and W. T. Tsang, “Anisotropically etched
deep gratings for InP/InGaAsP optical devices,” J. Appl. Phys. 62, 3461
(1987).

B. I. Miller, U. Koren, and P. J. Corvini, “InGaAs/InP quantum boxes
and wires through use of atmospheric OMVPE and holographic photo-
lithography,” poster paper 1-17, Third International Conference on Su-
perlattices, Microstructures & Microdevices, Chicago, 1987.

B. I. Miller, A. Shahar, U. Koren, and P. J. Corvini, “Quantum wires in
InGaAs/InP fabricated by holographic photolithography,” Appl. Phys.
Lett. 54, 188 (1989).

U. Koren, T. L. Koch, P. J. Corvini, B. I. Miller, G. Eisenstein, R. S.
Tucker, Y. K. Su, and R. J. Capik, “High power high speed single mode
SIPBH-DFB lasers at 1.3 micron,” J. Appl. Phys. 64, 4785 (1988).

G. Eisenstein, U. Koren, A. H. Gnauck, T. L. Koch, R. S. Tucker, P. J.
Corvini, B. I. Miller, and Y. K. Su, “Spectral and modulation properties
of 1.3-um SIPBH DFB lasers,” Appl. Phys. Lett. 53, 1905 (1988).

ix



21.

22.

23.

24.

25.

26.

27.

T. L. Koch, P. J. Corvini, U. Koren, and W. T. Tsang, “Wavelength uni-
formity of 1.3 um GalnAsP/InP distributed Bragg reflector lasers with
hybrid beam/vapour epitaxial growth,” Electron. Lett. 24, 822 (1988).

F.S. Choa, W. T. Tsang, R. A. Logan, R. P. Gnall, U. Koren, T. L. Koch,
C. A. Burrus, M. C. Wy, Y. K. Chen, P. F. Sciortino, A. M. Sergent,
and P. J. Corvini, “Very high sidemode-suppression-ratio distributed-
Bragg-reflector lasers grown by chemical beam epitaxy,” Electron. Lett.
28, 1001 (1992).

P. J. Corvini, M. M. Hashemi, S. P. DenBaars, and J. E. Bowers, “Fe-
doped semi-insulating InP grown by atmospheric pressure MOCVD us-
ing tertiarybutylphosphine, trimethylindium, and ferrocene,” paper P4,
Electronic Materials Conference, Boston, 1992.

M. P. Mack, C. M. Reaves, P. J. Corvini, S. P. DenBaars, M. S. Leonard,
M. Mondry, and J. L. Merz, “Growth of high quality In,Ga;_,As/InP
quantum wells with tertiarybutylarsine and tertiarybutylphosphine,” pa-
per J2, Electronic Materials Conference, Boston, 1992.

M. M. Hashemi, J. B. Shealy, P. J. Corvini, S. P. DenBaars, and U. K.
Mishra, “High performance InP JFETSs grown by metalorganic chemical
vapor deposition using tertiarybutylphosphine (TBP) as the phosphorus
source,” J. Electron. Mat. 23, 233 (1994).

P. J. Corvini and J. E. Bowers, “Avalanche breakdown in semi-insulating
Fe:InP,” post-deadline paper PDB3, Sixth International Conference on
Indium Phosphide and Related Materials, Santa Barbara, 1994.

P. J. Corvini and J. E. Bowers, “Modeling of DC current injection in
semi-insulating Fe:InP,” ARPA Optoelectronics Technology Center ex-
ternal seminar, San Diego, 1995. .



Abstract

Current Injection in
Semi-Insulating Indium Phosphide

by
Patricia J. Corvini

Steady-state current injection in planar n-SI-n Fe:InP is modeled both nu-
merically and with the simplified theory of Lampert and Mark. The predicted
I-V characteristics for various layer thicknesses are compared with experimen-
tal results from material grown by non-hydride metalorganic chemical vapor
deposition (MOCVD).

The simplified theory, which is based on electron drift only, fails to explain
several of the observed phenomena—most notably a destructive breakdown
at voltages below the trap-filled limit. The two-carrier numerical model can
predict these phenomena, by allowing the inclusion of such processes as carrier
diffusion, impact ionization, recombination through traps, field emission from
traps, and nonlinear velocity-field relations. The mechanisms are added to the
model one at a time, so as to clarify the effect of each on the progress of trap
filling and on the I-V characteristics.

For comparison of theories with experiment, we define a critical voltage
as that at which the current reaches 1 A/cm?, which would be an appropri-
ate performance criterion for current blocking in many lasers. Critical voltages
predicted by the numerical model are significantly lower than those of the sim-
plified theory at both ends of the thickness range, and are in good agreement

with the experimental results. Performance is dominated by carrier diffusion

at the interfaces in the case of thin layers and low trap densities, and by
avalanche injection in the case of thick layers and high trap densities. In the
latter case, a positive feedback mechanism accounts for the experimentally
observed destructive breakdown.
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Symbols and abbreviations

With the exception of B, C, D, G, R, and v as noted below, the following
symbols are used consistently throughout this work to designate the quantities
indicated:

L thickness of SI layer

z position (2 in Appendix E)

q electron charge (magnitude)

m, free electron mass

Me effective mass, electrons

my density-of-states effective mass, holes
Nc effective density of states, conduction band
Ny effective density of states, valence band
€ " permittivity

k Boltzmann constant

T temperature

&, Ev conduction and valence band edges

&p Fermi level

EFn electron quasi-Fermi level

& trap level

& ionization energy, ¢ — &;

g degeneracy factor for trap

Y electrostatic potential

E electric field

R net SRH recombination ratef

G generation rate by impact ionizationt

Jny Jp, J electron, hole, total current densities

Dy, D, electron, hole diffusivitiest

Bny Hp electron, hole mobilities (field-dependent)
Pnoyr Mp,  low-field electron & hole mobilities (constant)

Xv



U, Vp electron, hole velocitiest

Usn, Usp  electron, hole saturation velocitiest
Vthns Vth, electron, hole thermal velocitiest
Ocn, Ocp  e€lectron, hole capture cross sections
€n, €p electron, hole emission probabilities
Tno» Tpo  Dackground SRH time constants
Qp, Op band-to-band impact ionization coefficients
B radiative recombination coefficient
Vx ohmic-to-SCL crossover voltage
VorrL trap-filled-limited voltage

Ver critical voltage

o capacitance (per unit area)

Q charge (per unit area)

6 n/n; (see §3.1)

X SCL-current prefactor (see §3.1)
CONCENTRATIONS:

N, total traps (deep acceptors)

Ny fully-ionized donors

n,p free electrons, holes

T, thermal free electrons

ng trapped electrons (filled traps)

Tto filled traps at equilibrium

Do empty traps at equilibrium

n; intrinsic carrier concentration

n, free electrons when §p = &;

P, holes when &r = & (p, = n}/n,)

Additional symbols are defined in the text as needed. These should be
considered as “local” to the discussions in which they occur. For example,
we hope that no ambiguity arises from the momentary use of the symbol
Ej to designate a scaling field in Appendix C, when we have already used
the constants Fg, and Ey, to describe the field dependence of the impact
ionization coefficients in Chapter 5 and E to describe the velocity-field relation

xvi



in Chapter 4. Similarly:

1The B, C, D, G, R, and v used in Appendix C are in the notation of
Lampert and Mark [1] and bear no relation to any B, C, D, G, R, and v
used elsewhere in the present document. While we thus occasionally re-use a
symbol, we have taken care that any given physical quantity is represented by
a single symbol throughout this work. In particular, we use n, to designate the
quantity that Lampert and Mark call N, and g for the quantity that Lampert

and Mark would call 1/g.

ABBREVIATIONS:

SI semi-insulating

SCL space-charge-limited

TFL trap-filled-limited

NDR negative differential resistance
SRH Shockley-Read-Hall

LV current-voltage

J-V current(density)-voltage

Cc-v capacitance-voltage

DLTS deep level transient spectroscopy
FTIR Fourier transform infrared

ESR electron spin resonance

SIMS secondary ion mass spectroscopy
VPE vapor-phase epitaxy

MOCVD metalorganic chemical vapor deposition
CBE chemical beam epitaxy

APD avalanche photodiode

xvii



Chapter 1

Introduction

Resistors are often pictured as linear circuit elements obeying Ohm’s Law.
This dissertation is about the I-V characteristics of a resistor that should not
be pictured this way.

The resistor described here is a planar layer of InP made semi-insulating
by being intentionally doped with iron. This technologically important resistor
exhibits highly nonlinear behavior, some of which cannot be explained by the
theory that has traditionally been applied.

A semi-insulating Fe:InP layer typically exhibits a regime of very high
resistance followed at larger biases by a rapid rise in current as a function
of voltage. (An I-V characteristic for such a layer is shown in Figure 1.1.)
The high resistance is a result of deep acceptors that lower the thermal carrier
concentration and also trap injected electrons, creating a negative space charge
that opposes further electron injection. The rapid rise in current is normally
attributed to the filling of these deep acceptor traps. Space-charge-limited
current flow and trap filling by injected electrons have been well described by
Lampert and Mark [1], and it is their approach that has traditionally been
applied to the analysis of Fe:InP.

We find, however, that this approach fails to explain our experimental
results. While the rapid rise in current predicted by the traditional theory is
smooth and reversible, we also observe an abrupt and destructive breakdown,
which has not been previously reported in Fe:InP and which we attribute to
avalanche injection of holes. In this case, the rapid increase in current occurs
while most of the traps are still empty—and therefore at much lower volt-
ages than the traditional theory would predict. The catastrophic nature of
this breakdown and the comparatively low voltages at which it occurs make
it a serious concern for device design. The present work develops a model
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Figure 1.1: Typical I-V curve for Fe:InP under electron injection from n-
. contact. Sample is a planar n-SI-n structure as shown in inset, grown by
non-hydride MOCVD under conditions listed in Chapter 6. The SI layer is 3.6
pm thick, with a 90-pm-diameter top contact. Current was externally limited
to 1 mA. Resistivity, defined as (A/L)(V/I) where A is the contact area and
L the thickness of the SI layer, is 108 Q-cm at 1 V, 107 Q-cm at 20 V, and 108

Q-cm at 29 V (points marked by dots.) The I-V curve for an ideal 100-MS2
resistor is shown for comparison.

that allows us to predict both the nature of the rapid rise in current and the
voltage at which it occurs. In the course of developing this model, we ex-

amine the contributions of several physical mechanisms to the current-voltage
characteristics of Fe:InP.

_ Semi-insulating (SI) Fe:InP is used for current blocking in numerous opto-
electronic devices, including lasers, detectors, and modulators. In these appli-
cations, it provides current confinement as well as good thermal conductivity,
reduced surface leakage, and favorable waveguiding properties.

Typical examples are the in-plane lasers shown in Figure 1.2. In these
structures, Fe:InP layers provide a high-resistance path that allows for a broad-
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Figure 1.2: Lateral cross-section of in-plane laser structures using Fe:InP
blocking layers: (a) SIPBH (semi-insulating blocked planar buried heterostruc-
ture) {2]; (b) buried crescent [3].
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Figure 1.3: Band diagram for bulk Fe:InP at thermal equilibrium.

area top contact while confining current to the active region.

SI Fe:InP has also been used successfully in electron devices, such as field-
effect transistors [4], and is the basis of inter-device isolation for InP-based
electronic and optoelectronic integrated circuits.

All of these applications rely on the ability of the semi-insulating material
to maintain a high resistance over some range of biasing conditions. Because
the resistance of an Fe:InP layer is strongly dependent on the biasing condi-:
tions, an understanding of the electrical behavior of this material is essential
for device and circuit design.

In a simple resistor obeying Ohm'’s Law, the number of carriers is constant,
i.e. unaffected by the applied bias. The carriers are all free to move, and they
drift in the applied field.

In semi-insulating InP, the situation is more complicated. The number of
carriers is not constant, and the carriers are not all free to move.

The semi-insulating nature of Fe:InP is due to a deep acceptor. Thls deep
acceptor compensates the usual n-type background, so that for a bulk sample
at thermal equilibrium the Fermi level is near the center of the bandgap, as
illustrated in Figure 1.3. This means that the thermal carrier concentrations
are small, and the resistance is high.

Under an applied bias, however, extra carriers can enter the semi-insulating
material. Because the thermal carrier concentrations are so low, only a small
applied bias is needed to substantially increase the carrier concentrations. The
added carriers result in a decrease in the resistance.

If the added carriers are electrons, initially most of them are trapped by
unoccupied acceptors—that is, localized in the vicinity of Fe atoms—so that
the increase in the free carrier concentration under bias is much smaller than it
would be in an intrinsic material. The trapped electrons contribute a negative




space charge that influences the field in which the free carriers drift. When
the traps fill up, the current rises rapidly and the layer behaves as if it were
composed of intrinsic material.

The processes we have just described are those that are included in the
traditional analysis, that is, in the well-known “simplified theory” of Lampert
and Mark [1]. This theory describes current injection in trap-controlled insu-
lators under the assumption that single-carrier drift is the dominant transport
mechanism and that carrier generation/recombination in the semi-insulating
material can be neglected. This approach provides an excellent framework for
thinking about the problem, but fails to adequately predict the behavior of
Fe:InP for device applications.

For design, we want to know at what voltage the current through the
SI layer will exceed that which is acceptable for our device, and we want to
know how to design the layer so as to maximize this “critical” voltage. In the
simplified theory, the critical voltage is attributed solely to filling of the traps
by injected electrons, and is therefore a simple function of the layer thickness
and of the initial concentration of empty traps. Experimental results suggest
that something else is going on. In the present work, we demonstrate that both
~ diffusion of carriers from adjacent n-layers and generation of electron-hole pairs
by impact ionization in the SI layer strongly affect the critical voltage. In the
presence of impact ionization, phenomena that would otherwise not affect the
critical voltage—such as nonlinear velocity-field relations and Shockley-Read-
Hall generation/recombination—also become significant.

Since none of these additional phenomena can readily be treated analyt-
ically, in this work we develop a numerical model and use it to explore the
effects of mechanisms that are ignored by the simplified theory. As noted
above, we find that some of these are very important for Fe:InP, so that the
numerical model provides a more accurate description of the material’s behav-
ior. We retain the philosophy of the simplified approach, however, in keeping
the problem as simple as possible at each stage, so as to isolate and thereby
understand the effects of each mechanism.

For this reason, we focus on the one-dimensional steady-state problem.
The insights gained from this case can then be applied to more complex ge-
ometries and to the time-dependent problem, and can be used as a basis for
the study of other physics.

We also restrict our attention to n-SI-n structures. Because Fe in InP is
an acceptor and an electron trap [5], Fe:InP is not well suited to blocking hole



6 Chapter 1. Introduction

current. Additionally, interdiffusion of Fe with p-dopants has been a problem
[6]. To prevent hole injection or dopant interdiffusion, an n-layer is commonly
inserted between Fe:InP and any neighboring p-layers (see Figure 1.2). The
n-SI-n structure is thus of great technological significance, and the prediction
of current-voltage (I-V) characteristics for n-SI-n InP is of value for device
design as well as for material characterization.

Previous work. Iron-doped InP has been under investigation for twenty
years. The material has been prepared by ion implantation [7] and in bulk as
well as by vapor-phase epitaxy (VPE) (8], metalorganic chemical vapor deposi-
tion (MOCVD) [9, 10, 11], non-hydride MOCVD [12, 13|, and chemical beam
epitaxy (CBE) [14], and has been analyzed by a wide variety of techniques.
Of particular interest for the present work are studies concerning the nature
of the Fe impurity in InP and its contribution to the semi-insulating behavior
of the material.

Electron spin resonance (ESR) data [5, 15] have established that Fe in
InP occurs as a substitutional impurity on Group III sites. The free atom
has electronic configuration 3d®4s?; on an In site, three of these electrons par-
- ticipate in bonding, leaving a 3d® (Fe%*) configuration for the neutral center.
The substitutional Fe acts as a deep acceptor, capable of trapping a single
electron to form a 3d® .(Fe?*) ionized configuration. It is this property which
is responsible for the semi-insulating nature of Fe:InP.

There is a wealth of spectroscopic data regarding internal transitions of the
occupied acceptor Fe?*, which exhibits excited states in the bandgap [15, 16,
17, 18]. Internal transitions of the neutral acceptor Fe’* have been reported
as well [19]. Crystal field theory has been applied to the calculation of the
positions of the various levels 15, 18, 20].

The electrical properties of SI Fe:InP have also been widely studied. I-V
characteristics of n-SI-n InP have been measured and analyzed by Cheng et al.
[7] and Sugawara et al. [21], among others.

Because SI Fe:InP is a trap-controlled insulator, much of its behavior can
be understood in the framework of existing theory. As we indicated above,
the general problem of current injection in insulators has been thoroughly an-
alyzed by Lampert and Mark [1]. Their approach emphasizes analytic solution
through simplification of the problem, and yields simple expressions describ-
ing the I-V characteristics. These results have frequently been applied to the
interpretation of measurements made on Fe:InP [7, 21].

It has also been recognized that mechanisms other than simple trap fill-



ing may be responsible for some of the observed behavior of Fe:InP. Kita-
gawa et al. [22] have described surface breakdown by a mechanism similar to
that which we propose for the bulk. Turki et al. [23] have proposed a field-
dependent trapping mechanism to explain their results.

Current injection in SI InP has been analyzed by numerical techniques as
well. The general problem of numerical analysis of semiconductor devices has
been treated extensively. The approach used here—simultaneous solution of
the Poisson and continuity equations by the method of finite differences—is
discussed by, for example, Kurata [24] and Selberherr [25]. Asada et al. [26]
used this method to analyze planar and two-dimensional current flow in several
SI InP blocking structures, with a model that included recombination through
the trap.

Similar numerical analyses have been carried out for other materials. The
GaAs literature, in particular, treats many of the same issues that we address
here. Both one-dimensional [27] and two-dimensional [28] geometries have
been studied. The importance of bandbending at interfaces has been recog-
nized [27), as has the importance of carrier generation by impact ionization
[29, 30). The nature of the traps is different in GaAs, however, so the Ga.As
results do not necessarily apply directly to Fe:InP.

Current instabilities in the presence of negative differential resistance of
the type caused by impact ionization have also been studied [31].

This work. The emphasis in this work is on understanding the contri-
bution of various physical processes to the electrical characteristics of n-SI-n
InP structures, as a means to accurate prediction of those characteristics. To
this end, we bring together several threads from the previous work. We draw
on the basic studies of the nature of the trap and its energy levels to give us
accurate parameters for use in the model. We explore the full implications of
the simplified theory for a trap of this type, to show the basis of the problem
in trap filling and electron drift.

Using standard solution techniques, we then develop a one-dimensional
numerical model. This allows us to easily examine spatial variations of the
electric field, carrier concentrations, trapped charge, etc., and thereby to gain
more insight into the effects of various processes than would be provided by the
terminal characteristics alone. By including them successively in the model,
we show the separate effects (on trap filling and on the I-V characteristics) of
carrier diffusion, nonlinear velocity-field relations, field emission from traps,
Shockley-Read-Hall (SRH) recombination/generation, and carrier generation
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by impact ionization.

We have already mentioned some experimental results as motivation for
the present work. We also perform a series of experiments specifically to
confirm the main predictions of our model. The focus here is on the critical
behavior—that is, the regime in which the current rises steeply as a function
of voltage—since this is important for device design. Our thesis is that several
mechanisms can contribute to a steep rise in current, in addition to simple trap
filling by injected carriers. In particular, we verify the importance of interface
effects for thin layers and of avalanche injection for thicker layers. In the latter
case we predict and observe destructive breakdown at voltages well below the
trap-filled limit.

Overview of dissertation. In this introduction, we have argued for the
value of an accurate model of one-dimensional, steady-state current injection
in n-SI-n InP. The next chapter gives an overview of the models presented in
this work, and shows in what ways they differ from each other and in what
ways they are the same.

In Chapter 3 we present the simplified theory of Lampert and Mark, and
apply this theory to Fe:InP. We extend the previous work in this area by
showing the spatial distribution of occupied traps predicted by this model,
as a function of bias level. A brief comparison with published experimental
results indicates the inadequacy of the simplified theory for predicting the
behavior of Fe:InP.

In Chapters 4 and 5 we present the numerical model for n-SI-n InP. Single-
carrier effects are treated in Chapter 4, in which we demonstrate that diffusion
from the n contacts dominates the behavior of thin SI layers.

Two-carrier effects are treated in Chapter 5. Here we show that, in the
presence of carrier generation due to impact ionization, a positive feedback
mechanism for avalanche breakdown results in lower breakdown voltages than
a simpler theory might predict. We show that, in this situation, recombination
through the traps also becomes important.

In Chapter 6 we compare the predictions of the simplified and numerical
models with experiment, with particular emphasis on the critical behavior. We
show that the numerical model gives better agreement, both as to the critical
voltages and as to the manner of breakdown. Discrepancies with regard to the
behavior below breakdown still remain, however.

In Chapter 7 we examine the sensitivity of the predicted critical voltage
to several design and materials parameters for the SI layer. Together with the



experimental results, these calculations yield useful design rules.

Chapter 8 gives a summary of the results, with emphasis on the impor-
tance of various physical mechanisms in different regimes of trap density and
layer thickness. We mention some implications of these results for device de-
sign, and propose further modeling and experimental work on Fe:InP. We also
propose using the model to study other traps and other materials.

The values of various constants used in the calculations are given in Ap-
pendix A, together with a discussion of how some of them were chosen. This
discussion draws on an occupation function derived in Appendix B. Appen-
dices C and D present mathematical detail for the simplified theory and nu-
merical model respectively. (The implementation of the numerical model has
been relegated to a separate document.) Appendix E contains mathematical
detail specific to the treatment of field emission in the numerical model. Ap-
pendix F presents a numerical calculation of the carrier concentrations in a p-n
junction under reverse bias, which we find helpful for understanding the n-SI-n
situation. Appendix G contains notes on the construction of the design curves
shown in Chapters 7 and 8, and mentions a phenomenon we call “avalanche-
assisted trap filling” which is not discussed elsewhere in the dissertation. (It
is the opinion of the author that appendices do not necessarily comprise “dull
stuff”, but rather contain material that, while relevant and even interesting,
does not belong to the main flow of the discussion.)

A list of symbols and abbreviations follows the table of contents.
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Chapter 2

Overview of models

While applications aspects of this work emphasize prediction and verification
of the critical behavior, one of the central aims of the dissertation is to present
a comprehensive picture of steady-state current injection in Fe:InP, indicating
the contributions due to various physical processes. To this end, an exposition
of several different and successively more complicated models is presented in
Chapters 3, 4, and 5. (Chapters 6, 7, and 8 compare some of the predictions
"with experiment, and show the implications of the theory for various design
situations.) :

All of these models are based on simultaneous solution of the Poisson and
continuity equations, and all share certain assumptions about the nature of
the trap, as well as other limitations. In this chapter, we give an overview of
the various models, in order to make clear the relations among them. We first
list the features common to all, then summarize the different approaches, and
finally discuss the value and applicability of each.

2.1 Common features

The semi-insulating nature of Fe:InP is attributed to the presence of a partially
ionized deep acceptor that acts as an electron trap and compensates the typical
n-type background due to unintentional shallow donors. This deep acceptor
trap promotes large resistivity at low bias by lowering the thermal carrier
concentration, and blocks current at higher bias by trapping a negative charge
which opposes further electron injection.

In all of the models discussed here, the deep acceptor is taken to be a
single-electron trap characterized by an ionization energy {c — & and a de-
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generacy factor g. (In the numerical model, we also allow for recombination
through this trap, characterized by two cross sections.) When the acceptor
is unoccupied, it is neutral with respect to the lattice; when occupied by an
electron, it carries a charge —q. For the reason mentioned in the introduction,
the neutral charge state is referred to as Fe3* and the —q charge state as Fe?*.
As also mentioned in the introduction, the Fe?* configuration (that is, the
occupied trap) exhibits excited states in the bandgap.

For a dynamic model, the nature of the transitions among the various
states of the occupied trap, and the associated transition rates, would be
important. For the steady-state situation, however, only the population of the
various levels matters. In Appendix B, we derive an occupation function for
a deep acceptor with excited states, and show that the effect of including the
excited states is to produce a temperature-dependent change in the degeneracy
factor for the acceptor level. (Our analysis assumes that the excited states
affect the problem only through the occupation function; if the spatial extent
of the excited states were large enough to promote tunneling between the traps,
this would not be the case.)

The ionization energy £c — & (Figure 1.3) refers to the position of the
lowest energy level of the occupied acceptor—that is, the one referred to in the
literature [15, 18] as the I'; level of the E manifold. A number of experimental
techniques have been used for the determination of this energy, with varying
results. As discussed in Appendix A, we have scaled the 4.2-K value of Thonke
and Pressel [18] to obtain &¢ — & = 0.59 eV at room temperature.

The degeneracy factor g is the ratio of the degeneracy of the unoccupied
(neutral, Fe3*) state of the trap to that of its occupied (ionized, Fe?*) state.
For an acceptor, g enters the occupation function (that is, the probability f;
that the trap is occupied by an electron) as

1
~ 1+ gexp[—(ér — &)/T]

where the trap level &; and the Fermi level £ are counted positive with respect
to some lower energy, such as the valence band edge. The value of g for Fe
in InP has been variously taken as 4 [16], 1 [26, 32], and 2/5 [33]. Using the
occupation function derived in Appendix B, a precise temperature-dependent
degeneracy factor can be obtained if the degeneracies of the individual excited
states of the occupied trap are known. On the assumption that the five 5E
levels of the Fe?* configuration are all nondegenerate, and that the Fe3* con-
figuration carries a two-fold spin degeneracy, we calculate in Appendix A a

fe

(2.1)
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degeneracy factor g = 0.45 at room temperature..

We have carried g explicitly in our equations, rather than incorporating
it as an equivalent shift in energy, so that the implications of using a different
value (when a reliable number is available) can be clearly seen.

For the calculations shown in Chapters 3-5, we have assumed a back-
ground donor concentration Ny of 1 x 10!® cm™3; for semi-insulating behavior,
we assume that the concentration of deep traps is larger than this. For many of
these calculations, we have assumed a trap concentration N; of 8 x 106 cm3,
corresponding to the solubility limit of Fe in InP at a growth temperature of
650 °C [34]. (Epitaxial Fe:InP with approximately this trap concentration has
been reported by Nakai et al. [11] and by Wolf et al. [34).) We also consider
cases of smaller trap densities.) In all cases, we assume that the traps are
uniformly distributed in space, that is, that N; is constant across the SI layer.
Values of other constants used are shown in Tables A.1-A.3 of Appendix A.

In all of the models discussed here, only the occupation of the trap level
is treated with Fermi-Dirac statistics. Background donors are assumed to be
fully ionized. Occupation of the conduction and valence bands is treated using
Boltzmann statistics and an effective density of states. A single temperature
describes the entire problem. (We have used T = 300 K.)

We assume that there is no hopping conduction or tunneling between
traps, so that current flow is due to free carriers only. All of the models are
one-dimensional and describe steady-state operation. (Because of the one-
dimensionality, we use the term “J-V” rather than “I-V” to designate the
current-voltage characteristics calculated in Chapters 3-5.)

2.2 Interrelation of models

Having said what all our models have in common, we now differentiate them
from each other. The motivation for bothering with several different models
is addressed in the next section; here we simply focus on what they are. That
is, we here summarize the assumptions that define the various models, and
introduce the terminology by which we will refer to them.

This section is intended as both introduction and roadmap to the discus-
sion in Chapters 3-5. The reader may thus profit from returning to it during
and after the reading of those chapters. On the other hand, the reader may
agree with one distinguished commentator that this section is best skipped en-
tirely. While Chapters 3-5 can indeed be read without Section 2.2, reading 2.2
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will show the reader ahead of time how the various models fit together—which
may be a great help in understanding any one of them.

The models fall into two categories, which we shall refer to as “simplified”
and “numerical”. Various degrees of sophistication are possible in both cate-
gories, but all of the models are based on simultaneous solution of the Poisson
and continuity equations. In the simplified approach, we begin with these
equations and then proceed to ignore various aspects of the physics (such as
carrier diffusion and recombination), until the resulting problem can be solved
analytically. In the numerical approach, we retain the exact equations, solve
them numerically, and then proceed to add terms in order to describe more
complicated physics. (The assumptions included in the various models are
summarized in Table 2.1 on p. 16. Schematic band diagrams for the simplified
and numerical problems, representing some of the main features of each, are
compared in Figure 2.1.)

The mathematical formulation of the drift-diffusion problem is familiar.
Therefore, in this section we state the general ( “numerical”) problem first, and
then formulate the simplified theories in that context. The detailed discussion
in Chapters 3, 4, and 5 follows roughly the opposite order, beginning with the
* simplest, case and working though to the more complicated ones.

Numerical models. For our problem of a deep acceptor with a back-
ground of fully-ionized shallow donors, the Poisson equation for the electro-
static potential 9 is

2

&Y e YNy +p—n—n) (22)
where n and p are the free carrier concentrations and ny = n,(N;,n,p...) is
the concentration of trapped electrons, or occupied deep acceptors. (A list
of symbols follows the table of contents.) For the n-SI-n problem, we vary
Ny and N; as functions of position, to define the layer structure. Each of
the carrier concentrations is also a function of position. The steady-state
continuity equations are

on 19J, _
5 = gos EtG =0 23)

op _  14J, _
% = "0 R+G = 0 (2.4)
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(a) numerical model : (b) simplified theory

Figure 2.1: Schematic band diagrams for simplified and numerical models,
showing injection mechanisms available in each. Drawings represent conduc-
tion & valence band edges and trap level as functions of position, with and
without applied bias.

‘where the electron and hole current densities are given by

_ on oY -
Jo = an% qn/—"nag (2’5)

- _po__ N .
Jp = —qD, 5 qpLp % (2.6)

Discretized forms of these equations constitute the basis of the numerical
model. Successive refinements are possible, depending on what processes we
include in the recombination and generation rates R and G, what form we as-
sume for the concentration of occupied traps n;, what velocity-field relations
we include in the mobilities s, and pp, and so on. (The diffusivities D, and
Dy, are derived from p, and p, according to the Einstein relation D = ukT/q.)
Various versions of the numerical model, along with the results they predict,
are discussed in Chapters 4 and 5 below (and are summarized in the lower half
of Table 2.1.) A schematic band diagram showing the problem as it appears
in the numerical model is given in Figure 2.1a.

Simplified models. In order to treat the problem analytically, and thus -
to gain more insight than can be had from the numerical solutions alone, some
simplifying assumptions must be made. The traditional approach is that of
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Lampert and Mark [1] (and it is their terminology that we are following in
our use of the terms “simplified” and, below, “phenomenological”’). In the
simplified theory, the problem is rendered tractable by restricting it to single-
carrier drift current and by considering the insulating layer only. That is, we
ignore holes, recombination/generation, and carrier diffusion, and we assume
ideal contacts. We also assume that the trapped electrons are in quasi-thermal
equilibrium with the free electrons, and that no large-field effects (such as
velocity saturation) are present. A schematic band diagram for the resulting
problem is given in Figure 2.1b.

Because the simplified models involve only one carrier type (electrons, in
our case), in order to maintain charge neutrality at equilibrium we now must
count the thermal and injected carriers separately. We have four classes of
carriers: thermal free electrons (n,), thermal trapped electrons (n,,), injected
free electrons (n — n,), and injected trapped electrons (n; — ny,). The ther-
mal electrons are balanced by an equal number of positive charges; only the
injected electrons contribute a net space charge. The Poisson equation (2.2)
thus becomes

~ o = dp = e (=) + (e )] (27)

where we have introduced the electric field E = —dy/dz. If the trapped
electrons are in quasi-thermal equilibrium with the free electrons, the total
concentrations n; and n are related by

e N, _ N,
¢ 1+ gexp[—(épn — &)/KT] 1+4+gn,/n’

where we define n, = Ng¢ exp[—(€c—&;)/kT]. The ionized donor concentration
N, enters the Poisson equation only through n, and n,.

With the simplifying assumptions of neglecting holes, recombination/gen-
eration, and diffusion current, the continuity equations (2.3-2.6) reduce to

(2.8)

J = Jp, = nqunE = constant. (2.9)

Neglecting diffusion current also implies that we are injecting electrons from
an ideal cathode, with E(z = 0) =0.

Parametric solution. The set of equations (2.7-2.9) can be solved an-
alytically, but the solution is unwieldy and does not yield an explicit J-V
characteristic. That is, both the position and the potential are expressed in
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terms of the electric field, which becomes a parameter for the solution. We re-
fer to this as the full or parametric solution to the simplified problem. Further
simplifications are possible, as follows:

Regional approzimation. A less unwieldy solution can be obtained by
splitting the layer up into regions according to which class of carriers is the
most numerous in each, and assuming that, in a given region, one class of
carriers controls the problem. The solution in each region is carried out subject
to the condition that the field and the carrier concentrations be continuous
across the boundaries of the regions. Piecewise implicit solutions for the J-V
characteristic can be obtained, depending on which regions are present for a
given bias level. This technique is treated extensively by Lampert and Mark,
and will not be discussed here. A

Phenomenological approach. The most drastic simplification is to assume
that a single class of carriers dominates the behavior of the entire sample, and
possibly also that the carrier concentrations are constant everywhere. (In the
latter case, the electrostatics is brought into the problem through a capaci-
tance.) The J-V characteristic is divided into regimes of operation, according
to which class of carriers dominates; the result is a four-section straight-line
approximation to the log J-log V characteristic, which yields considerable in-
sight. .
Extended phenomenological approach. As an intermediate step between
the phenomenological and full parametric solutions, we propose some simple
extensions that can be grafted onto the phenomenological solution to yield
a more accurate J-V characteristic. These extensions are best described in
the context of a detailed exposition of the phenomenological approach, so
we will not attempt to summarize them here. The phenomenological and
extended phenomenological approaches, as well as the parametric solution to
the simplified problem, are discussed in more detail in Chapter 3 (and are
summarized in the upper half of Table 2.1.)

2.3 Why all these models?

Our goal with both the simplified and the numerical models is to understand
and predict the electrical characteristics of Fe:InP as a function of the mate-
rial properties, such as the doping levels. The various models offer different
contributions toward that goal.

At one extreme, we have the phenomenological approach, which yields
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simple expressions describing a piecewise approximation to the J-V curve. This
approach, in which only the most basic physics is retained, does not describe
everything we experimentally observe, but is necessary for understanding any
more complicated model that does. At the other extreme is the numerical
model, with many physical processes included. The numerical model gives
greater accuracy and is valid over a broader range of doping levels and operat-
ing conditions, but by itself is difficult to understand and yields useful trends
only after repeated calculations.

In this work, we present results from both the simplified and numerical
models, because we believe that each adds value to the other. The numerical
results are more readily understood on the basis of the insight gained from
the simplified model. Furthermore, by building up the numerical model in
stages, we can identify the influence of various physical processes. We demon-
strate the effect of carrier diffusion by comparing the results of the simplest
numerical case to those of the full simplified theory, and then go on to include
other processes that cannot be handled analytically. By first thoroughly un-
derstanding the drift-only problem, we use the simplified theory to inform our
interpretation of the numerical results.

On the other hand, the numerical results also inform our application of
the simplified theory, by allowing us to evaluate the validity of the simplifying
assumptions under various circumstances. The simplified theory is familiar
to many and forms the traditional framework for discussion; therefore, it is
important that we know its limitations and be able to judge the accuracy
of its approximations. In addition to providing a more accurate picture, the
numerical model gives us a good understanding of the range of applicability
of the simplified theory.

We present several versions of the numerical model, in order to show the
effects of various physical processes. These include carrier diffusion (Section
4.2), drift velocity saturation and negative differsntial mobility (Section 4.3),
field emission from the traps (Section 4.4), recombination through the traps
(Section 5.1), and band-to-band impact ionization (Section 5.2).

We present several versions of the simplified theory, as an aid to under-
standing. The parametric solution (Section 3.2) to the simplified problem
provides a bridge between the insight gained from the phenomenological the-
ory (Section 3.1) and the accuracy gained from the numerical model; that
is, we understand the parametric solution on the basis of the phenomenologi-
cal theory, and we understand the numerical results by comparing them with
the parametric solution. The extended phenomenological approach (also in
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Section 3.2) offers an intermediate step between the phenomenological theory
and the parametric solution. It does not have the analytic simplicity of the
phenomenological approach, but is still conceptually simple and easy to grasp,
while yielding results that agree well with the parametric solution.

That the numerical model is not merely a small correction to the simplified
theory can be seen in Figure 2.2. Here we show the critical voltage calculated
in the two models, as a function of the thickness of the SI layer, for two different
trap densities. (The critical voltage, an important performance criterion, can
be loosely defined as the voltage at which the current starts to rise steeply,
or the voltage below which the current density is satisfactory for a particular
application. For this work, it has been taken as the voltage above which the
current density exceeds 1 A/cm?.) As we will see in Chapter 6, the numerical
model is in much better agreement with experiment. The simplified theory
gives a good estimate of the critical voltage only when the layer is thick enough
that interface effects do not dominate, yet not so thick that field effects become
important before most of the traps are filled. For a low trap density, there
may be a large range of thicknesses over which the simplified theory gives a
good estimate of the critical voltage; for a high trap density, there is hardly

- any thickness for which this is so.

We emphasize that, although its simplifying assumptions fail for both
thin and thick layers, the simplified theory forms a valuable basis for further
understanding and for identifying the processes that dominate the operation in
regimes for which it fails. Similarly, regardless of whether a given experimental
result can be explained on the basis of the numerical models discussed here,
these models provide a basis for understanding what is going on. By showing
the implications of the various physical processes that they do treat, the models
may allow us to conclude that other processes must be responsible for some
observed behavior, and aid in the identification of those other processes.
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Figure 2.2: Critical voltage as a function of SI layer thickness, for large and
small trap densities, comparing numerical results with simplified theory. Nu-
merical model includes carrier diffusion, nonlinear velocity-field characteristics,
SRH generation/recombination, and impact ionization.
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Chapter 3

Simplified theory

T

In their classic work Current Injection in Solids 1], Lampert and Mark ex-
pound a simplified theory of current injection in trap-controlled insulators.
This theory forms the basis of our understanding, so we review it here. In
later chapters we will be referring to regimes of operation whose meaning is
made clear in the framework of the simplified theory. In the present chapter,
we apply the simplified theory to the case of Fe in InP, and calculate the spa~
tial distribution of filled traps, as a function of bias level, predicted by this
theory. - .

The assumptions underlying the simplified theory were mentioned in Chap-
ter 2. To repeat, these include:

Holes can be neglected (for our case of electron injection).
Carrier diffusion can be neglected.
Recombination/generation can be neglected.

Free and trapped carriers are in quasi-thermal equilibrium.
Carrier mobility is constant.

In Section 2.2, we gave a mathematical statement of the problem based on
these simplifying assumptions, showing how the equations of the simplified
theory (2.7-2.9) relate to the standard Poisson and continuity equations (2.2-
2.6). We then mentioned several ways in which the simplified problem can be
made even simpler, so as to yield more insight at the price of some accuracy.
In this chapter, we discuss three approaches to the simplified theory: the phe-
nomenological approach, which is easiest to understand; the full parametric
solution, which has the greatest accuracy; and an extended phenomenological
approach, as an intermediate step connecting the accuracy to the understand-
ing. The phenomenological approach and the full solution are discussed by
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Lampert and Mark; we propose the extended phenomenological approach as
an alternative to the technique of regional approximation. Since computational
resources are now readily available, the value of the intermediate approaches
is today primarily pedagogical. For this purpose, the extended phenomeno-
logical theory adequately explains the J-V characteristics while retaining the
conceptual simplicity of the phenomenological approach.

3.1 Phenomenological approach

Recall that we can divide the carriers into four classes: thermal free electrons,
thermal trapped electrons, injected free electrons, and injected trapped elec-
trons. The essence of the phenomenological approach is the assumption that,
in each operating regime, one of these classes of carriers dominates the behav-
ior of the entire sample, so that the other carriers may be ignored for purposes
of solving the Poisson equation.

The relative populations of carriers in the four operating regimes are
shown schematically in Figure 3.1. These are actually bar charts indicating

- the number of free, trapped, thermal, and injected electrons. The suggestion

of a band diagram is used only to show which carriers are free and which are
trapped. Open circles represent thermal carriers, and filled circles represent
injected carriers.

As we increase the injection level, we encounter in sequence the ohmic,
shallow-trap space-charge-limited (SCL), trap-filled-limited (TFL), and trap-
free SCL regimes. The ohmic regime (Figure 3.1a) is so called because here the
number of thermal electrons is larger than the number of injected electrons;
the premise of Ohm'’s Law is that the applied bias does not change the free
carrier concentration. At somewhat higher injection levels, the number of
injected carriers exceeds the number of thermal carriers, and we enter the
shallow-trap SCL regime (Figure 3.1b). Here the injected trapped carriers
are the most numerous class, and they dominate the space charge. So long
as most of the traps are still empty, the ratio of the concentrations of free

and trapped electrons remains constant. While this remains true, the number

of free carriers remains proportional to the space charge, and this gives SCL
current flow. (The ratio of the concentrations of free and trapped carriers in
the ohmic and shallow-trap SCL regimes is governed by Boltzmann statistics.
This ratio is drawn in Figure 3.1 as 1:2, but is actually around 1:10°. The
reason for the designation “shallow-trap” is discussed below.)
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Figure 3.1: Relative carrier populations under various injection conditions.
Open circles represent carriers that are present at thermal equilibrium; filled
_ circles represent additional carriers injected under bias.

At still higher injection levels (Figure 3.1c), empty traps become scarce.
In this trap-filled-limited regime, the injected trapped carriers are still the
most numerous and still dominate the space charge, but now the number of
injected free electrons starts to rise rapidly, and so does the current. Finally, at
the highest injection levels, the injected free electrons outnumber the injected
trapped electrons, so that free electrons dominate the space charge (Figure
3.1d). Then we are back to a situation in which the number of free carriers
is proportional to the space charge, so we again have SCL current flow. This
regime is termed “trap-free” because here the trapped charge can be neglected
with respect to the free charge.

As we mentioned above, the phenomenological approach is based on ignor-
ing all but the most numerous class of carriers for the solution of the Poisson
equation in each regime. The result is a piecewise approximation to the J-V
characteristic, as shown for example by the dashed line in Figure 3.2. Current-
voltage relations describing the various regimes are developed below, as are
expressions for the distribution of occupied traps in the various regimes. The
ohmic, shallow-trap SCL, and trap-free SCL regimes are all treated by simul-
taneous solution of the Poisson and continuity equations; we have J = nqu,E
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Figure 3.2: J-V curves in various versions of simplified theory: (i) phenomeno-
logical, (ii) parametric solution, (iii) extended phenomenological treatment.
N =1x10% cm™3, Ny =1x 10" cm™3, L = 2 um, p, = 2000 cm?/V-s.
In the SCL regimes, the phenomenological curves shown are those that re-
sult from assuming a constant carrier concentration and approximating the
electrostatics with @ = CV = ¢V/L.



3.1 Phenomenological approach 27

in all three cases, with the differences coming in the forms of n and E. The
TFL regime is treated differently. Because of this, and because it is most easily
understood as a transition between the two SCL regimes, we treat the TFL
regime last.

Ohmic regime. Here at the lowest biases, the thermal carriers dominate.
Since there is no space charge associated with these, we have = pL = 0 and
dE/dz = 0. Only the free carriers contribute to current flow. We invoke
J = nqu,E (where n = n, is the concentration of thermal free carriers) to
obtain

J =n,qu.V/L , 3.1)

where L is the thickness of the SI layer. Since the field is constant and the
carrier concentration is independent of bias level, J(V') is linear, and the slope
of logJ vs. logV in this regime is 1. The concentration of occupied traps
is uniform by assumption, and equal to the bulk equilibrium value n,,. If
Ny > ny, then ny, = Ny. Also, from (2.8) we have n, = gn,n;,/(Ny — nyp) =
gn, Ng/(Ny—Ny). Thus, the current density in the ohmic regime is proportional
to gn,, which is a characteristic of the trap, as well as to the carrier mobility
Hn- : .

Shallow-trap SCL regime. At higher biases, the number of injected
trapped electrons (n; — n;,) becomes large compared to that of both thermal
free and thermal trapped electrons, so we neglect the thermal carriers in the
solution of the electrostatics problem and have dE/dz = qn;/e. The trapped
electrons do not contribute to current flow, but we can relate the free electron
concentration to the trapped electron concentration, since the two populations
are assumed to be in quasi-thermal equilibrium. If the trap is shallow enough
(i.e. at high enough energy) with respect to the quasi-Fermi level in this regime,
the Boltzmann approximation can be applied to the occupation statistics for
the trap as well as to the occupation statistics for the conduction band, and the
ratio 6 of the free carrier concentration to the trapped carrier concentration is
approximately independent of bias level:

6 =n/n,=n(l+gn,/n)/N, = gn,/N, (3.2)

using (2.8). Note that 6 is a small number, on the order of 10~9. Then, still
using J = ngun,E (where now n = 0n, is the concentration of injected free
electrons), we have for the J-V characteristic

J=x-0euV?/L3. (3.3)
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Here x = 9/8 from the solution of the Poisson equation. As in the ohmic
regime, the current density is proportional to gn,. Here, however, J(V) is
quadratic, and the slope of log J vs. logV is 2. The quadratic current-voltage
relation arises from the fact that the free carrier concentration depends on the
bias level.

The latter point can be most easily seen by taking a slightly different
approach to the derivation, making an even stronger simplification. What we
have done so far is to neglect all but one class of carriers (namely the injected
trapped electrons) in the solution of the Poisson equation; we have still allowed
these carriers to be non-uniformly distributed in space. As developed by Lam-
pert and Mark, the phenomenological approach also neglects spatial variation
of the carrier densities. With this added assumption, the Poisson equation is
not solved directly; rather, using the relation @ = CV, the electrostatics is
brought into the problem through the capacitance C, whose form we assume
we know. (We refer to this as the “pure” phenomenological approach; we will
use it again in treating the TFL regime below.) In the regimes of SCL current
flow, we take the parallel-plate form C = ¢/L. Thus Q = gn;L = CV = €V/L,
and n = On, = 0CV/qL = 6eV/qL?. In J = ngu.E, therefore, both n and E
are proportional to V, giving a quadratic current-voltage relation.

Solution of the Poisson equation for this regime shows that the spatial
distribution of occupied traps is non-uniform: n.(z) = [eJ/2¢%0u,]"/?z~1/2.
Much of the negative charge is near the cathode (z = 0), justifying the phe-
nomenological approximation C = ¢/L. The error introduced in (3.3) by the
latter approximation is just the geometric factor x: the purely phenomenolog-
ical approach gives x = 1, whereas the exact solution to the Poisson equation
(still subject to the condition that one class of carriers dominates everywhere)
gave us x = 9/8.

In designating this the “shallow-trap SCL” regime, we are following Lam-
pert and Mark in the use of the term “shallow”. In the context of our work,
which deals with deep acceptor traps, by a “shallow trap” we simply mean
one that lies far enough above the quasi-Fermi level to allow the use of the
Boltzmann approximation for its occupation statistics. Whether a particular
trap is “shallow” at a given temperature thus depends on the doping densities
and on the injection level as well as on the ionization energy of the trap. As we
shall see, in many common situations the Fe acceptor in InP cannot properly
be treated as a “shallow trap”.

Trap-free SCL regime. At extremely high biases, the number of in-
jected free electrons becomes large compared to the number of injected trapped
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electrons, so for the electrostatics problem we ignore all but the injected free
electrons and have dE/dx = qn/e, which with J = nqu,E (where n is again
the concentration of injected free electrons) gives

J=x-euV?/L®. (3.4)

Here again x = 9/8, or for the purely phenomenological approach we can take
Q = gnL = CV so that x = 1. All of the traps are filled in this regime, so the
concentration of occupied traps is uniform and equal to N;.

Comparison of (3.4) with (3.3) might suggest that § = 1 for the trap-
free SCL regime, and this is true in the sense that (for the shallow-trap SCL
regime) @ represents the ratio of the number of electrons that carry current
to the number of electrons that contribute to the space charge. In the trap-
free SCL regime, in which we consider only the injected free electrons, every
electron contributes both to the current and to the space charge. However,
as defined in the discussion above, @ relates the concentrations of free and
trapped electrons, and (3.3) is derived under the assumption that this ratio is
a constant, independent of bias level. This is not the case in the trap-free SCL
regime, so the comparison of (3.4) with (3.3) using the strict definition of @ is
“invalid. In fact, the trap-free-SCL assumption that the trapped carriers can
be neglected correspends to 8 >> 1. (We will consider the dependence of 6 on
injection level when we take up the extended phenomenological approach in
Section 3.2.)

TFL regime. The trap-filled-limited (TFL) regime forms the transition
between the shallow-trap SCL regime and the trap-free SCL regime. (We are
assuming here that enough traps are present in relation to thermal carriers for
the shallow-trap SCL regime to appear at all; it is also possible to have a TFL
transition directly from ohmic to trap-free SCL behavior.) In the shallow-
trap SCL regime, the space charge is dominated by injected trapped electrons,
and the current is carried by injected free electrons which number a constant
(and small) fraction of the trapped ones. In the trap-free SCL regime, the
space charge is dominated by injected free electrons, and the current is carried
by those same free electrons. In both cases, the number of free electrons is
proportional to the number of electrons that are responsible for the space
charge; it is this fact that gives rise to the square-law J-V characteristic in
these regimes (under the assumption of constant mobility).

In the TFL regime, by contrast, the space charge is dominated by trapped
electrons (as in the shallow-trap SCL regime), but the current is carried by
injected free electrons whose number is not a constant fraction of the number of
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trapped electrons (as in the trap-free SCL regime). As the traps fill up, injected
electrons are no longer apportioned between the traps and the conduction
band in the ratio of Boltzmann factors, but go instead increasingly into the
conduction band. So long as the injected trapped electrons outnumber the
free ones, however, the electrostatics is still dominated by the trapped charge.
The result is that, since a given increment of injected charge may represent an
insignificant change in the total space charge and still cause a large change in
the free charge, a tiny increase in applied voltage can produce a large increase
in the current.

The TFL regime is characterized in the phenomenological theory by a fixed
voltage corresponding to the space charge of the injected trapped electrons,
whose number is equal to the number of empty traps at thermal equilibrium,
Pto- Since the charge is uniformly distributed through the layer (assuming the
concentration of traps is constant), the capacitance per unit area is C = 2¢/L.
(Unlike the parallel-plate approximation that we used for the SCL regimes,
this expression is exact.) The charge per unit area is Q@ = gp, L, so that the
trap-filled-limited voltage is given by

L?.
Vipy = Q _ apu _

C = 2

(3.5)

This expression, derived under the assumptions of the phenomenological the-
ory, applies equally to the steep section of the J-V curve as calculated from
the full parametric solution to the simplified problem (see below). Note that
the simplified theory predicts a quadratic dependence of Vrgy, on thickness.

The phenomenological approach yields simple expressions for J(V') in the
various regimes of operation, allowing us to relate the J-V characteristics to
the properties of the material. It thus suggests the possibility of extracting
information about those properties from the J-V characteristics. For exam-
ple, we saw in (3.5) how the trap-filled-limited voltage Vrrr depends on the
layer thickness and on the equilibrium density of empty traps. Similarly, the
crossover voltage Vx between the ohmic and shallow-trap SCL regimes depends
on the background donor concentration: by equating the current densities in
these two regimes, we find
_ quL2
=
Thus, if the thickness of the layer and the permittivity are known, the doping

Vx (3.6)
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levels can be obtained from the corner voltages in the J-V curve:

9 €

Ny = §q—L2"Vx (37)
€ 9

N, = "'I‘EE<2VTFL+'8‘VX) : (3.8)

Since the current density in both the ohmic and shallow-trap SCL regimes is
proportional to the product of g and uy, it is not possible from a J-V curve
alone to determine these quantities independently. (We will return to this
point in Chapter 8.) However, if one is known—as, for example, the mobility
from a time-of-flight measurement—then the other can be determined from
the J-V curve, assuming that the energy level of the trap can be had from
spectroscopic techniques.

The J-V characteristics could thus provide a useful method for determin-
ing materials properties in a semi-insulating layer. We shall see, however, that
we encounter a number of difficulties in trying to apply this method to Fe:InP.
One of these is evident from the exact solution to the simplified problem, and
is addressed in the next section.

The phenomenological approach to the simplified problem gives consid-
erable insight into the current-voltage behavior in a trap-controlled insulator,
at the price of some accuracy. To see exactly what is implied in the original
equations (2.7-2.9) describing the simplified problem, we next consider the full
solution to this problem.

3.2 Parametric solution and
extended phenomenological approach

The phenomenological J-V characteristic was derived under the assumption
that, for a given injection level, one class of carriers dominates the electro-
statics problem everywhere in the sample. Making no such assumptions about
the carrier concentrations, we return to the original simplifying assumptions
(single carrier, drift only, no generation/recombination, etc.) as formulated
in Equations 2.7-2.9. (These are repeated as 3.9-3.11 below.) In this sec-
tion we present the results of the exact (parametric) solution of the simplified
problem, and also discuss some extensions to the phenomenological approach.
These extensions can be used to improve the accuracy of the phenomenolog-
ical approximation to the J-V characteristic, while retaining the conceptual
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simplicity of the phenomenological approach; and they serve as a means of
explaining the detailed form of the parametric J-V curve.
Once again, the statement of the simplified problem is:

= =" [(n = ny) + (ny — ngg)] (3.9)
ne =7 ;:;l 7 (3.10)
J = nqu, E = constant (3.11)
with the boundary condition
E(z=0)=0. (3.12)

This set of equations can be solved analytically for V(J, E) and z(J, E) [1].
The technique is to substitute n = J/qunE in the Poisson equation, leaving

dE
- =F(J,E) (3.13)

so that
z = | dz = / (dz/dE) dE = [ 7, E)aE (3.14)
vV = / Edz= / E (dz/dE)dE = / EFNJ,E)dE. (3.15)

These are integrated using the method of partial fractions; the solution is
shown in Appendix C. In all cases the integration runs from zero field at the
cathode boundary up to the value of the field at the position of interest. As
noted, the solution does not yield an explicit current-voltage relation for a
given layer thickness L; rather, it yields the position = and the voltage V at
that position as functions of the field E and the current density J. To obtain
the J-V curves shown in this work, J was taken as the independent variable,
and z(J, E) = L was inverted by iteration to give E(J) at position L. This
was then inserted into V/(J, E) to yield V(J) at position L, the desired result.
An example is plotted as the solid line in Figure 3.2.

The discrepancy between the parametric solution and the results of the
phenomenological approach below the trap-filled limit can be understood main-
ly in terms of two effects. First, the phenomenological approach neglects the
contribution to the total current of injected carriers in the ohmic regime and
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of thermal carriers in the SCL regime; but in fact these two contributions add
in both regimes. This effect tends to obscure the ohmic-to-SCL transition and
increases the current in both regimes above that predicted by the phenomeno-
logical theory. Second, the energy level of Fe in InP is near enough to the
equilibrium Fermi level that the shallow-trap approximation is not very good
over most of the “shallow-trap” SCL regime. That is, enough of the traps
are filled that the Boltzmann approximation fails to describe the occupation
probability for the trap, and 4 is no longer independent of bias level.

We can assess these effects by including them as extensions to the phe-
nomenological theory. The dotted curve in Figure 3.2 was calculated using
the phenomenological approach and (a) including the factor x = 9/8 that
results from exact solution of the Poisson equation in the shallow-trap SCL
regime, (b) adding the current contributions from thermal and injected free
carriers in the ohmic and shallow-trap SCL regimes, as well as (c) assum-
ing a bias-dependent §(V) in the shallow-trap SCL regime. For the latter,
the shallow-trap SCL square law (3.3) is derived as usual, and then 6(V') is
inserted into the result. (V') is defined by

n _n{V)+gn,

ov) = - = T (3.16)
where n(V) is taken from the phenomenological relation
Q=¢qL|(n—n,)+ ——-Nt——nto =CV. (3.17)
° 1+gn,/n

We have used C = 2¢/L because the charge is approximately uniformly dis-
tributed in the regime for which this correction becomes important. We find

n=%(—b+\/b2-4c) (3.18)

where
b= gn, + N; — n, — ny, — 2eV/qL? (3.19)
¢ = gn,(—n, — ny, — 2¢V/qL?) . (3.20)

This technique saves computation time over the parametric solution for the J-V
curve, and yields results which agree well with the parametric solution below
the trap-filled limit. It is simpler in form than either the parametric solution
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or the regional approximation, and is valuable as an aid to understanding, in
the spirit of the phenomenological approach. It does not, however, provide a
way of calculating the spatial distribution of the field and the trapped charge.

Note that for the doping levels used in Figure 3.2, neither the full solu-
tion nor the extended phenomenological solution exhibits an extended regime
in which the slope of logJ vs. logV is 2. Rather, the slope changes grad-
ually throughout the “shallow-trap” SCL regime, indicating a variation in
0 with injection level and thus a failure of the shallow-trap approximation.
The transition from ohmic to SCL conduction is very smooth, without an
easily-identifiable crossover voltage. Thus, while the “pure” phenomenological
approach suggests that the doping levels can be readily extracted from the J-V
curve according to (3.7-3.8), the full solution shows that such an extraction
can be very difficult in practice. (The full solution does predict a well-defined
VrrL, from which the difference N; — Ny can be obtained. Another approach to
the extraction of doping information from J-V curves is mentioned in Chapter
8.)

We have discussed the parametric solution to the simplified problem for
two reasons. First, it gives us a standard by which to judge the adequacy of
the phenomenological solution as an approximation for the simplified problem.
Indeed, we saw that (with certain extensions) the phenomenological approach
can be made to yield a very good approximation; so our understanding of
the simplified problem as based on the phenomenological approach is sound.
Second, the parametric solution shows us exactly what is implied in the for-
mulation describing the simplified problem, so that we may more easily under-
stand which of the effects observed experimentally and/or predicted by a more
complicated model are due to other physics and which are due simply to the
physics contained in the simplified problem: electrostatics and single-carrier
drift combined with Fermi-Dirac statistics for the occupation of the trap. For
later comparison, we show in Figure 3.3 the J-V characteristics predicted by
the simplified theory for several layer thicknesses, for a trap density of 8 x 106
cm™3,

The parametric solution also allows us to calculate the spatial variation
of the field and of the carrier concentrations. The distribution of trapped
carriers (occupied traps) is plotted in Figure 3.4 for L = 2 ym and the same
doping as in Figure 3.3. The biases for which n:(z)/N; is shown in Figure
3.4 are indicated by the filled circles in Figure 3.3. Although the progress of
trap-filling in a sample is often described [7] in spatial terms, with the edge
of a region of filled traps progressing across the sample (in effect, a regional
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Figure 3.3: Simplified J-V characteristics for L = 0.125, 0.5, and 2 um, from
parametric solution, using N; = 8 x 10! cm™3, N; = 1 x 10* cm™3, pu,, = 2000
cm?/V-s. Filled circles on L = 2 um curve indicate bias levels for Figure 3.4.
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Figure 3.4: Spatial distribution of occupied traps in simplified theory, for
L=2pm, N, =8x10% cm™3, Ny = 1 x 10'® cm™3, p, = 2000 cm?/V-s.
Bias levels are 1077, 1078, 1075, 104, 1073, 1072, 107}, 1, and 10 A/cm?, as
indicated by filled circles in Figure 3.3.
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approximation), we see that it can be as well described in “phenomenological”
terms, with a quasi-Fermi level progressing upwards in energy and describing
the occupation of the traps over a large region of the sample. (This is the
reason that the extended phenomenological approach works as well as it does.)

3.3 Difficulties with the simplified theory

The simplified theory predicts a quadratic dependence of critical voltage on
layer thickness over the entire range of layer thicknesses. As can be seen from
the family of simplified J- V curves in Figure 3.3, this simplified approach would
suggest that (for the trap density shown) a 0.125-um layer could still maintain
J <1 A/cm? at 0.88 V, and that a 2-um layer could maintain J < 1 A/cm?
at 225 V. As we might expect, and as we saw in Figure 2.2, this picture is
unrealistic.

Depending on what values one assumes for the various parameters, the
simplified theory can often be made to match an experimental J-V curve fairly
well. For example, in Figure 3.5 we compare a measured J-V curve from a 2-
pm epitaxial layer grown by MOCVD [13] to a theoretical J-V curve calculated
from the simplified theory. In this case, the trap density used in the calculation
was 7.7 x 10" cm~3, but we had no independent measure of the trap density .
in the sample. (SIMS data for a similar sample showed an Fe concentration of
around 107 ¢cm3.)

When independent measures of the trap density are available, however,
they sometimes point to much larger trap densities than a fit to the simplified
theory would suggest. This is particularly true if one compares the measured
critical voltage to the trap-filled voltage predicted by the simplified theory.
For example, Wolf et al. [34] reported a trap density of 8 x 10'® cm=2, from
capacitance-voltage (C-V) measurements on a sample co-doped with Si. For -
a 3-um layer with this trap density, and assuming a background donor con-
centration below 2.5 x 10 cm~3, the simplified theory predicts a trap-filled
voltage in excess of 500 V; but Wolf et al. report a critical voltage of about
50 V.

Furthermore, we know on principle that many of the assumptions of the
simplified theory are unphysical over some of the regimes shown in Figure 3.3.
For example, the peak field for the 0.5-um layer operating at 5 V would be well
over 10° V/cm; we know that at this field it is unphysical to continue to assume
a constant mobility. As we increase the field even further, we would expect



38 Chapter 3. Simplified theory

1E-1 5
1E0] ®°e experiment
&E‘ simplified theory
3 ]
< 1E-3
2 ;
e ]
[}
2 1E-4+
S 3
E ]
=3
3 i
1E-5-
1E-6 L) L3 ) llll 1] L) ‘ll|l|| v L) LI S B B I |

0.1 1 10 100
applied bias (V)

Figure 3.5: Comparison of measured J-V curve with fit to simplified theory
(a) experimental [13], {b) parametric solution using N; = 7.7 X 105 cm™3,
Ng=4x 10" cm™3, p, = 1200 cm?/V-s, and L = 2 um.

that effects such as impact ionization would become important, especially for
thicker layers (for which the avalanche breakdown field could be attained below
the trap-filled limit). For thinner layers, in which the trap-filled limit occurs
at lower field and in which band-bending at the interfaces would occupy a
larger fraction of the total layer thickness, we would expect carrier diffusion
at non-ideal contacts to play a larger role. In order to assess these and other
effects, we turn to a numerical model.
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Chapter 4

Trap filling and
single-carrier effects

Using the numerical model, we can include various effects that were omitted
from the simplified theory, and by comparing the numerical results with those
of the simplified theory, we can examine the consequences of each effect in

_turn. (We stress that this is not just an academic exercise, but is necessary
for an adequate description of the material.) In this chapter, we consider the
effects of carrier diffusion, nonlinear velocity-field relations, and field emission
from traps, and we examine the role of each in determining the course of trap
filling and the resultant J-V characteristics. In particular, we show that the
critical behavior for thin SI layers is dominated by diffusion from the contacts,
and that space-charge-limited current flow need not be characterized by a
quadratic J-V curve. In Chapter 5, we will turn to impact ionization and
avalanche injection and examine some situations in which the critical behavior
does not depend on trap filling.

4.1 Numerical model

Although in this chapter we study single-carrier effects, on which the influence
of holes is negligible, in all of our numerical work we solve the full two-carrier

problem. The basic formulation was given in Section 2.2 and is repeated here
for convenience:

—_— = —E(Nd+p-—n—nt) (41)
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The Poisson equation (4.1) is solved simultaneously with the continuity equa-
tions (4.2-4.3) under various sets of assumptions about the physics. Initjally,
we retain many of the assumptions of the simplified theory. We then lift these
‘assumptions one at a time, so as to isolate the contributions due to the vari-
ous phenomena. The changes enter through the recombination and generation
rates R and G, through the trap occupation function used to calculate n;, and
through the velocity-field relations embodied in the mobilities u, and p,.

The simplest form of the numerical model, discussed in Section 4.2, retains
the assumptions of constant carrier mobility and of quasi-thermal equilibrium
between the trapped and free electrons. That is, #, and p, in (4.4-4.5) are
taken to be constants, and the trapped electron concentration n; in (4.1) is
derived from the free electron concentration n according to (2.8). We also
continue to assume that there are no field-related generation processes. Com-
paring the predictions of this model to those of the simplified theory shows
the effects of including carrier diffusion in the problem.

The effects of drift velocity saturation and negative differential mobility,
for which p, and p, in (4.4-4.5) are taken to be functions of the local electric
field, are discussed in Section 4.3. The effect of field emission, for which the
trap occupation function is also taken to be a function of the local electric
field, is discussed in Section 4.4.

In this chapter, we retain R = G = 0. In Chapter 5 we consider SRH re-
combination/generation, both through unspecified unintentional defects (R,)
and through the Fe level itself (R;), and generation G by band-to-band impact
ionization.

The numerical solution is discussed in Appendix D. Standard finite dif-
ference techniques [24] are used, with the electrostatic potential ¢ and the free
carrier concentrations n and p as independent variables. The drift-diffusion
equations (4.4-4.5) are implemented in integral form, following the technique
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of Scharfetter and Gummel [24, 35]. A three-layer, n-SI-n structure is de-
fined by discontinuous changes in the doping levels N; and Ny. In the n-type
contact layers, for which N; = 0, the donor concentration Ny, is taken as
5 x 10'7 cm~? for the calculations in Chapters 4 and 5. In the SI layer, we use
a background donor concentration of 1 x 10 cm™3, as before. (The values of
other constants used in the calculations are given in Appendix A.) Voltage
(i.e. Dirichlet) boundary conditions are applied at the outside edges of the
n-layers. That is, we demand that the carrier concentrations regain their bulk
equilibrium values at the boundaries, and that the separation of the Fermi
levels at the boundaries be equal to the applied voltage.

4.2 Carrier diffusion

For the simplified theory, we assumed the electric field to be zero precisely
at the edge of the SI layer on the cathode side. We neglected any zero-bias
bandbending in the SI layer at the contacts, and assumed that at zero bias
the concentration of empty traps was constant and equal to its bulk thermal-
equilibrium value across the entire layer. In actuality, of course, we will have
bandbending at the interfaces as a result of the contact potential between the
n-type contacts and the semi-insulating layer. Electrons diffuse into the SI
layer from the n-layers, filling some of the traps. Under bias, we will have a
potential barrier at the cathode side, and the point of zero electric field will
occur inside the SI layer rather than at the interface. This effectively reduces
the thickness of the SI layer. For a thick enough layer, this reduction is a
small fraction of the total thickness, and the simplified theory remains a good
approximation. For a thinner layer, however, the distance taken up by the
barrier can be a significant fraction of the total layer thickness. For submicron
layers, the bulk concentration of empty traps may never be attained at all in
the limited distance available.

The distance required to empty the traps to bulk level decreases with
increasing trap density. In Figure 4.1 we show zero-bias band diagrams for high
and low trap densities for several layer thicknesses, from an exact numerical
solution to the Poisson equation. The resulting distributions of filled traps at
zero bias are shown in Figure 4.2. Note that for a thin layer all of the traps
are already filled, even for N, = 8 x 10! cm™3, and that for a 2-um layer with
N; = 2.5 x 10" cm™3 the concentration of empty traps at the center of the
layer is only 50% of the bulk value.
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pm. (a) N; = 8 x 10 cm~3; (b) N, = 2.5 x 10"® cm™3.

To treat the barrier correctly under bias, we include carrier diffusion in
the problem, and solve the system of equations (4.1-4.5) above, continuing to
treat the trap as a partially ionized deep acceptor in quasi-thermal equilibrium
with the conduction band and retaining for now the other assumptions of the
simplified theory (constant mobility, no high-field effects, etc.). J-V curves
resulting from these calculations are shown in Figure 4.3, for the same set of
layer thicknesses as in Figure 3.3. (For comparison, the simplified curves are
reproduced here as well. In the trap-free SCL regime, the numerical curves
show less current and smaller slope than do the simplified ones, because series
resistance in the n-layers is included in the numerical calculations but not
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2000 cm?/V-s), for L = 0.125, 0.5, and 2 ym. N, = 8 x 10! cm™3,

in the simplified ones.) As we would expect, the most significant effects of
including diffusion (as compared with the simplified model) are seen for thin
layers. As we saw in Figure 4.2, in a thin layer the bandbending from the
interfaces can result in a concentration of initially empty traps that is lower
than the bulk equilibrium value p,, across the entire layer. This increases the
concentration of thermal electrons above its bulk value n,, leading to larger
current in the ohmic regime and narrowing or obliterating the shallow-trap
SCL regime. Also, the inclusion of contact effects causes the TFL regime to
be spread out over a wider voltage range than in the simplified theory. This
result can be understood in terms of the shift in the position of the cathode
barrier with increasing bias, as illustrated for a 0.5-um case in Figure 4.4. The
effective thickness of the SI layer increases with increasing bias as the plane of
zero electric field moves toward the cathode interface.
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Figure 4.4: Band diagrams for 0.5-um layer operating at 1 V and 12 V bias,
showing junction effects. Shift in position of cathode barrier with increasing
bias is readily seen in inset. N, = 8 x 10'® cm™3. (The trap level is included
in the diagram to help indicate the spatial extent of the SI layer.)

The lower the trap density in the SI layer, or the larger the background
donor concentration, the more pronounced are all of these effects.

In cases for which bandbending in the SI layer at the interfaces is impor-
tant, the donor concentration in the n-type contact layers is also important.
In Chapters 4 and 5 we have used Ny = 5 x 1017 cm™3 in the contact layers.
(Calculations using other contact-doping levels are shown in Chapters 6 and
7.) Notice in Figure 4.4 that a significant portion of the total voltage can be
dropped across the depletion layer in the anode contact; for a given overall
bias, this reduces the potential drop across the SI layer, shifting the trap-filled
limit to higher bias. Bandbending in the anode n-layer thus has the opposite
effect on Vrrr, from that of bandbending on the cathode side of the SI layer;
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depending on doping levels, the resulting value of Vg, can be either larger or
smaller than that predicted by the simplified theory.

Since the value of Vg, for thin layers depends strongly on the behavior at
the interfaces, the performance of thin layers cannot reliably be predicted by
extrapolating to smaller thicknesses the quadratic fits of Vpy, vs. L obtained
from thicker samples (as, for example, in [21]). Also, the J-V characteristics
of a thin Fe-doped layer are not usefully described by a bulk resistivity, even
in the ohmic regime. Rather, the behavior of a thin Fe:InP layer in an n-SI-n
configuration is a property of the structure as a whole. The numerical model
allows us to treat it as such, and indicates that even for trap densities on the
order of the solubility limit, very thin Fe:InP layers are ineffective for current
blocking.

4.3 Nonlinear velocity-field relations

The drift-diffusion solution as described above is valid in regimes for which
the carrier mobility u, can be assumed constant, that is for fields up to a
few kV/cm in InP. At higher fields, however, the velocity-field characteristic
for InP is nonlinear, exhibiting velocity saturation and negative differential
mobility. For most cases—e.g. V > 1 V for a 2-um layer—a realistic model
must therefore include the effects of these nonlinearities.

To show the effects of the various features of the velocity-field character-
istic on the behavior of our structure, we consider three different forms for
v(E), as shown in Figure 4.5. The first of these is a linear characteristic de-
scribed by v = p,E, where p, is independent of the field. The second is simple
velocity saturation, in which v(E) is a monotonically increasing function that
never exceeds the saturation velocity vs;,. The third is a more realistic form
that includes negative differential mobility and approaches v,, for large fields.
The figure also shows a Monte Carlo calculation taken from Sadra et al. [36].
For historical reasons, we are using a fit to this Monte Carlo to represent our
“realistic” v(FE) curve in the calculations of Chapters 4 and 5.

The linear v(E) characteristic is the one we have been using so far, in the
development of the simplified theory in Chapter 3 and in the calculations in
Section 4.2. Before taking up the realistic v(E) characteristic with negative
differential mobility (below, p. 49), we first consider what happens when we
simply allow the drift velocity to saturate.

To start, we return to the phenomenological treatment of the J-V charac-
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ity. Also shown are Monte Carlo results from Sadra et al. 36, Figure 8, for
majority electrons with polar phonon interaction unscreened].

teristic for the SCL regime, but now instead of a constant carrier mobility we
assume a constant carrier velocity. Recall that the square-law form (3.3) of the
J-V curve in the SCL regime was derived under the assumption of constant
mobility, and depends on the relation n(z) ~ 1/E(z) (from J = nqu,E = con-
stant). If we have instead a constant carrier velocity vsn, then n(z) ~ 1/vsn =

constant (from J = gnv,, = constant), and we find for the J-V characteristic
in the shallow-trap SCL regime

J = 20ev,,V/ L2 (4.6)

where 0 is again the ratio of the concentrations of free and trapped electrons.
Thus, if the carrier velocity is constant, the J- Vrelation is linear in the shallow-
trap SCL regime. Note that in general a square-law J-V relation is not an
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Figure 4.6: J-V characteristics for 2-pm layer: (i) constant-mobility; (ii)
simple velocity saturation; (aiii) velocity saturation with negative differential
mobility. N; = 8 x 10 cm™3.

inherent signature of SCL conduction if the carrier mobility is not constant,
that is, if the velocity-field relation is nonlinear.

The phenomenological treatment with drift velocity saturation is rela-
tively straightforward. Depending on the functional form of the velocity-field
relation, analytic solutions to the full simplified problem (as discussed in Sec-
tion 3.2 above) can also be obtained. Interested readers are referred to the
work of Lampert and Rose [37).

In the numerical model, various forms for v(E)—or, equivalently, u(E)—

can be assumed. For simple velocity saturation, we use two-section velocity-
field characteristics as described by

H(n,p)o = K(n,p)o
1+ l‘(n,p)oIE |/ Usnp) L1+ |E|/ Eynp)

l‘l'("lp) = (4'7)
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that is,

1 1 1
= +
Unp)  HnpoE  Vstnp)
where the sign of the second term is that of the field E. The electron and hole
saturation velocities (vsn, vsp) are 1 x 107 and 8 x 106 cm/s respectively. For
the low-field mobilities (i, ftp,) We use 2000 and 400 cm?/V-s respectively,
the same values as were used in the constant-mobility calculations of Section
4.2. A plot of v(E) from (4.8) using these numbers appears in Figure 4.5.
Numerical results illustrating the effects of simple velocity saturation by
comparison with the constant-mobility case are shown in Figures 4.6 and 4.7
for a 2-um layer. (We also show the effects of a v(E) characteristic with
negative differential mobility, which is discussed below.) Recall that the J-V
characteristic under the assumption of constant mobility was quadratic in the
shallow-trap SCL regime. By contrast, the J-V characteristic calculated with
velocity saturation (Figure 4.6) is nearly linear in the shallow-trap SCL regime.
This can be understood on the basis of the phenomenological approximation,
as discussed above, and is the result of the more uniform charge distribution
which obtains in the presence of velocity saturation (see Figure 4.7).

(4.8)

The above discussion assumes monotonic velocity-field relations as de-
scribed by .(4.7-4.8) for both electrons and holes. It is well known, however,
that electrons in InP exhibit negative differential mobility. We can include

this effect by instead using
v E\*
1+ -———) (%)
(“ﬂolE l Eo

ﬂ‘n = ll'no 1 + ( E )4 (4.9)
Ej
for the electrons. This form is taken from Horio et al. [28]; it is equivalent to
_ UngE £ vsn(E/E0)4
Up = T (B/E) (4.10)

which is plotted in Figure 4.5. Here again the sign of the second term is that of
E, and we have used Ey = 1.5 x 10* V/cm to conform to the results of Sadra
et al. [36]. (This form still assumes that the electron velocity approaches a
constant value for very large fields, beyond the range shown in [36].) The J-V
characteristic that results from using this form for our 2-um layer is plotted
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as the dark line in Figure 4.6. Since the electron velocity now undergoes a
transition from a constant-mobility regime to a constant-velocity regime, it
is not surprising that the predicted J-V characteristic also shows a transition
from constant-mobility to constant-velocity behavior as we increase the bias
level.

For large biases, the electron velocity will now be larger in the region of
low electric field near the cathode than in the rest of the structure. For steady-
state current continuity, the free electron concentration near the cathode must
therefore be smaller. The reduction in n is accompanied by a reduction in n,
in the vicinity of the cathode, as shown in Figure 4.7b. Note that the peak
field is larger in the presence of a negative differential mobility than it would
be with simple velocity saturation.

As we saw in Figure 4.6, the inclusion of negative differential mobility
introduces a sublinear regime in the J-V characteristics. This effect is most
pronounced for thicker layers; in some cases we predict an almost constant
current density over a wide voltage range, as shown in Figure 4.8.

, Sublinear SCL behavior has recently been observed in low-temperature-
grown (LT) GaAs [38]. The typical measured J-V curve in Fe:InP, however,
exhibits a regime of superlinear behavior below the steep rise in current; the
near-linear and sublinear J-V curves shown in Figure 4.6 do not in general
agree with our experiments. The superlinearity in the experimental curves
can be a trap-filling effect, if the actual trap densities are substantially lower
than that assumed in this calculation; that is, on the basis of the model so far,
we expect a linear J-V curve in the saturated-velocity SCL regime only so long
as the ratio § remains constant. If the trap density is small, the shallow-trap
approximation fails at relatively low bias, and 8 (and therefore dJ/dV') starts
to increase with bias. On the other hand, if the assumed (large) trap density
is accurate, then the lack of agreement indicates that some other process is
operating. One possibility, field emission from the traps, is discussed in Section
4.4 below.

Another possibility is that the low-field mobility is so small that the sat-
urated drift velocity is not attained in the SCL regime. Our experimental
results suggest that this might indeed be the case in our material. We reach
this hypothesis, however, on the basis of knowing what the effects would be if
the mobility were larger, so for the purposes of this chapter and the next we
continue to use the larger values in order to illustrate those effects.
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4.4 Field emission from traps

The fields in our structures are high enough that we must include drift veloc-
ity saturation and negative differential mobility, for which we would expect
(assuming a large trap density and a typical low-field mobility) a linear or
sublinear J-V characteristic in the SCL regime. Measurements, however, typ-
ically show superlinear behavior. One possible source of this discrepancy is
field emission from traps. A related mechanism has been previously proposed
to explain the quadratic J-V regime of operation [23]. In order to examine
this effect, we must lift the assumption of quasi-thermal equilibrium between
trapped and free electrons; that is, the concentration of trapped electrons can
no longer be assumed to be uniquely specified by the concentration of free
electrons as in (2.8). We need a new occupation function for the trap.
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To establish a method for obtaining the new occupation function, let us
first review how we got the old one. In writing (2.8), we have simply taken
the equilibrium occupation function (2.1) for the trap, as given by Fermi-
Dirac statistics, and used the assumption of quasi-thermal equilibrium to plug
into it a quasi-Fermi level derived from the free electron concentration. This
“method” glosses over some key assumptions, however; it is really a shorthand
for what we do when we consider the capture and emission processes that
populate and depopulate the traps.

Textbooks usually discuss these processes in connection with Shockley-
Read-Hall recombination, so that capture and emission of holes as well as
capture and emission of electrons are considered. For now, however, we con-
tinue to assume that there is no recombination through these traps, so that
we only need consider two processes, as shown in Figure 4.9. Capture of elec-
trons from the conduction band occurs with rate R.,, which is the product
of the number of available (i.e. free) electrons n and the probability per unit
time that one of them will be captured, ¢,. The probability ¢, is in turn
the product of the probability that an electron will intercept a trap—which
we can write as oc,Ven, Ny, where o, is the effective cross section for electron
capture—and the probability (1 — f;) that said trap will be empty. (Here f;
is the occupation function we are trying to derive.) The total capture rate is
thus Ren = OcnVin, Ni(1 — fi)n.

Emission of electrons to the conduction band occurs with rate R.,, which
is the product of the number of trapped electrons f;NV; and the probability per
unit time that one of them will be emitted, e,. It is in the evaluation of e,
that we make the assumptions that lead to (2.8).

In steady state, the number of trapped electrons must be constant, so
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the total capture rate must equal the total emission rate. Equating R, =
OenVin, Ni(1 — fi)n with R., = e, N, f; gives
_ 1

1+ en/(Cecntin,m)

fe

(4.11)

This can be inverted to give an expression for e, in terms of n and f;. Since
we know both n and f; at thermal equilibrium, we can evaluate e, at thermal
equilibrium as follows:

1—
en = OcnUth, ( ftft°) Ny = OenVih, gN,- (4.12)
0

Here f;, is the equilibrium occupation probability for the trap, n, is the equi-
librium concentration of free electrons, g is the degeneracy factor for the trap
as defined in (2.1), and n, = N¢gexp[—(¢éc — &:)/kT) as usual. The second
equivalence in (4.12) depends on the use of a single quasi-Fermi level for n,
and fi,.

We then assume that e, remains unaffected by non-equilibrium conditions.
That is, for quasi-equilibrium we substitute (4.12) into (4.11) to obtain

1

ft= 1+gn1/n7

(4.13)
as in (2.8).

Now the premise of field emission from the traps is that the emission
probability e, does not remain constant, but increases in the presence of an
electric field. The reason for this can be seen in Figure 4.10, in which we
schematically represent the potential well due to the trap as a one-dimensional
Coulomb potential, with and without an applied field. In the presence of the
field, the energy needed to remove the electron from the well (by emission
over the barrier, in the positive z direction) is reduced by an amount A&, (F)
with respect to the zero-field case. This is referred to as Poole-Frenkel barrier-
lowering [39)]. _

As suggested by Karl Hess, we have used expressions for the barrier-
lowering taken from Martin et al. [39] and have treated field emission by as-
suming that the capture cross section o, stays constant but that the emission
probability e, depends on the local field as

€n = OenVth, N, - exp[A&(E)/kT) . (4.14)
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Figure 4.10: 1-D Coulomb potential with applied field.

This is equivalent to lowering the ionization energy éc — & of the trap by
an amount A&;(E), and results in a field-dependent quasi-Fermi level for the
trap that differs from the quasi-Fermi level for free electrons by A&,(E). For-

mally, we multiply n, in (4.13) by the factor exp[A&,(E)/kT); the occupation
function thus becomes

. -

1+ (gn, exp[A&(E)/KT))/n

(So far, we have not included recombination through the traps. As shown
in Section 5.1, such recombination also introduces a change in the occupation
function. To include both field emission and recombination, we multiply n,
by exp[A&,(E)/kT) in both (5.5) and (5.6).)

The change in activation energy Aé,(F) for a given field of course depends
on the nature of the potential associated with the trap. We don’t know a priori
what kind of potential to assume, so we have experimented with three varieties.
For the 1-D Coulomb potential shown in Figure 4.10, the functional form of the
barrier-lowering A&,(FE) is derived in Appendix E. We also tried assuming a
more realistic 3-D Coulomb potential and a 3-D square well. Functional forms
for the field-dependent change in emission rate for the two 3-D potentials were

(4.15)
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Figure 4.11: J-V characteristics for 2-pm layer including velocity saturation
with negative differential mobility and field emission from traps, using (i) 3-D
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taken from the work of Martin et al. [39] and are reproduced in Appendix
E. J-V curves for a 2-um layer, assuming in turn each of the three types
of potential, are shown in Figure 4.11. The situation in the absence of field
emission is also shown for comparison. All of these curves include nonlinear
velocity-field relations (4.9-4.10) as used for Figure 4.8.

Notice that a quadratic J-V regime can indeed be an SCL regime, in
which the quadratic J-V behavior is due not to the usual SCL square law,
but to the linear SCL law with velocity saturation, in combination with field
emission. The reason for this can be seen in the electric field and occupied trap
distributions, illustrated for the 2-um case in Figure 4.12. The effect of velocity
saturation was to make the charge distribution more uniform (compared to the
constant-mobility case), and thus to make the field distribution more nearly
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triangular (as we saw in Figure 4.7). Since field emission reduces the amount
of trapped charge in the high-field region, the effect of including field emission
in the model is to push the charge and field distributions back toward the
forms they would have had in the simplified, constant-mobility model.

As we will see in Chapter 6, if we allow the carrier velocity to saturate
(as we do in Figure 4.11), none of the three flavors of field emission considered
here gives particularly good agreement with the shapes of our experimental
I-V curves. This may indicate that other processes are operating, or that the
low-field mobility is small enough that the velocity does not in fact saturate.
In any case, because it is not clear whether we need to include field emission,
or if so, in what form we should include it, and because the calculations are
more time-consuming if we do include it, we have not included field emission in -
the calculations for Chapter 5. Knowing the effects that field emission would
have on our field and trapped-carrier distributions allows us to estimate what
would happen if we did include it; we also show in Section 6.1 a calculation
of critical voltage as a function of layer thickness, in which we include field
emission from a 3-D Coulomb potential as well as all of the two-carrier effects
from Chapter 5.

In this chapter we have introduced holes into the problem, without com-
menting on their effects. In the next chapter we will examine the free carrier
concentrations and see that, in the absence of a generation mechanism such as
impact ionization, the hole population is small and has a negligible effect on
the field and trapped-carrier profiles shown in the present chapter. As we shall
see, even Shockley-Read-Hall generation/recombination through the traps, by
itself, would have little effect on the J-V characteristics developed here.

So far, we have examined the spatial distribution of trapped electrons in
the SI layer and shown how it is affected by diffusion from the contacts, by
nonlinear velocity-field relations, and by field emission from the traps. We
have also seen how these effects would manifest themselves in the J-V charac-
teristics. In the next chapter we look at how things change under the influence
of various two-carrier processes.
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Chapter 5

Avalanche injection
and two-carrier effects

In the previous chapter, we examined various effects in the context of a single-
carrier injection problem. None of these explains the destructive breakdown
that we observe experimentally. In this chapter, we turn to two-carrier ef-

fects, and examine the results of including several generation/recombination

mechanisms in the model. We show that Shockley-Read-Hall recombina-
tion/generation alone, whether through a low concentration of unspecified,
unintentional midgap centers or through our Fe traps themselves, has a negli-
gible effect on the J-V characteristics. We then examine the consequences of
carrier generation by band-to-band impact ionization. We show that in the
presence of such generation the holes are very important, so that SRH re-
combination through the traps or radiative recombination can be significant.
The holes participate in a positive feedback mechanism for avalanche break-
down. Unlike the critical behavior due to trap filling, this breakdown is indeed
destructive, and it can occur at bias levels well below the trap-filled limit.

5.1 Shockley-Read-Hall generation/recombination

Shockley-Read-Hall (SRH) generation/recombination can occur through inten-
tionally-introduced traps (Fe in our case) as well as through unintentional de-
fects. For intentional traps, we keep track of the charge on the recombination
centers and include that in the Poisson equation, and we characterize the cen-
ters by electron and hole capture cross sections. For unintentional defects,
since we do not know the nature of the defects and since there are few enough
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Figure 5.1: Carrier concentrations for 2-um layer operating at 10 V, with
and without background SRH generation/recombination. Includes velocity
saturation and negative differential mobility.

of them that their contribution to the net space charge can be neglected, we
assume a midgap level and characterize the recombination rate phenomeno-
logically by two time constants, 7,, and 75, as in (5.1).

Background SRH generation/recombination. To start, we assume
that the only generation/recombination mechanism is SRH processes through
unintentional defects. We include this by setting R = R, throughout the
structure, where

np — n¢

R = .
© Too(n + 1) + T (P + 1)

(5.1)

(As the R suggests, this is written as a recombination rate. If np < n?, we
have R, < 0, that is, generation of carriers.) This is a standard expression
for SRH recombination, commonly found in textbooks. It assumes a nonde-
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generate state located at the intrinsic level &;, and is thus a special case of
the more general expression used below to treat recombination through the Fe
traps. (We provide a derivation below, in connection with the more general
expression.) For typical InP quality, we take 7, = 7, = 1077 s.

The effect of including this mechanism is to increase the hole population in
the SI layer, in a manner completely analogous to that in the depletion region of
a p-n junction. (The latter is discussed in Appendix F.) Carrier concentration
profiles calculated with and without SRH generation/recombination are shown
in Figure 5.1. The change in the hole concentration due to SRH processes can
be many orders of magnitude, but the number of holes is still small enough
that this change has a negligible effect on the field and trapped-carrier profiles
as calculated in Chapter 4.

That the additional holes have a negligible effect on the J-V characteristics
is illustrated in Figure 5.2, in which we show both the total current J = J,+Jp
and the hole current Jp, as functions of applied bias, in three different planes
of the structure. The calculation is for the same case as the 2-um curve shown
in Figure 4.8, except for the addition of the background SRH mechanism. The
hole currents shown are those in the planes of the two junctions and in the
center of the SI layer. It is evident that the hole current constitutes a very
small contribution to the total. (Without the SRH term R,, the hole currents
in all three planes would be below 1 x 10~'* A/cm?.)

The plateau in p(z) under SRH generation seen in Figure 5.1 is similar
in origin to the carrier plateaus shown in Figure F.1 for a reverse-biased p-n
junction. The abrupt rise in the hole current in the anode junction (Figure
5.2) corresponds to the depletion of the diffused carriers from the space-charge
region at the junction, and thus to the arrival at the junction plane of the
generation-induced carrier plateau edge.

We have assumed that we can neglect any space charge due to carriers
trapped at unintentional defects. We cannot of course neglect the space charge
due to carriers trapped at our Fe centers, so we must treat recombination
through these centers separately:

SRH generation/recombination through traps. In the simplified
theory and in the numerical analysis of Chapter 4, we assumed that the trapped
electrons were in quasi-thermal equilibrium with the free electrons, which is
equivalent to assuming that Fe in InP acts purely as an electron trap and that
no recombination takes place through the Fe level. A number of experiments,
however, indicate that Fe in InP is a recombination center as well as an electron
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Figure 5.2: J-V characteristic from numerical model, including background
SRH generation/recombination, showing total current as well as hole currents
at planes of metallurgical junctions and at center of SI layer. At the plane of
the cathode junction (z = 0 in Figure 5.1), most of the holes generated in the
body of the SI layer have already recombined.

trap, so we need to allow for SRH processes through this level.

In our discussion of field emission in Section 4.4, we lifted the assumption
of quasi-thermal equilibrium between trapped and free electrons, so that the
concentration of trapped electrons became a function of the electric field as
well as of the concentration of free electrons. In that situation, we considered
only capture of electrons from the conduction band and emission of electrons
to the conduction band. We included field emission solely by modifying the
occupation function for the trap.

In the case of recombination through the trap, we must account for capture
and emission processes involving the valence band as well as those involving
the conduction band, as indicated in Figure 5.3. This results in modifications
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Figure 5.3: Electron and hole capture and emission processes. Arrows show
direction of electron transitions.

both to the occupation function and to the recombination rate R.

The derivation of the occupation function follows the same method as
in Section 4.4, but we now have to invoke the principle of detailed balance in
the evaluation of the emission probabilities. The electron capture and emission
rates are still given by Ry, = 0ensn, NVi(1 — fi)n and Ren = e, N;f;. From anal-
ogous arguments, the hole capture and emission rates are Ry = 0opvin, Nt fip
and R., = e;,Ni(1 — f;). Here oy, is the cross section for hole capture, e, is
the probability per unit time that an unoccupied trap will emit a hole, and
ft is as usual the probability that a trap is occupied by an electron. (By hole
emission we mean the transition of an electron from the valence band into the
trap, leaving behind a hole in the valence band. Hole capture is the reverse
process.) For steady state operation, we demand that the population of the
trap level be constant, so that Re, + Rep = Ren + Rep. That is, the rate at
which electrons enter the traps must equal the rate at which they leave. Using
our expressions for the four rates, we find

_ 1
fe= OcpUth,D + €5

(5.2)

Once again, we evaluate the emission probabilities under thermal equilib-
rium conditions, and then assume that they remain constant. In equilibrium,
the rates of hole capture and emission must equal each other, just as the rates
of electron capture and emission must equal each other, and the carrier con-
centrations and occupation function are known. We saw in (4.11- 4.12) how
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equating R., with R, enabled us to evaluate ey, in terms of oes:

1-
€n = Ocnlth, ( ftft°> Ny = OenVth, gN,;- (6.3)
0

Similarly, equating R, with R.;, allows us to evaluate e, in terms of g¢p:

fto

€p = OcpUth, (1 s ) Dy = OcpUth, P, /9- (5.4)
0

Here the constants n, and p, = nZ/n, represent the electron and hole concen-
trations, respectively, that would be present in equilibrium if the Fermi level
coincided with the trap level.

Using (5.3) and (5.4) to eliminate e, and e, from (5.2), we find that the
occupation function for the trap level becomes

f= TenVthn T + OcpVthy, (P1/9)
=
OcpUth, (P + P, /9) + OcnVin, (n + gn,)

(5.5)

where as usual n, = f.NV;. This expression gives the steady-state occupation
probability for a recombination center or trap state whose degeneracy factor
is g and whose energy levél is contained in the constant n,.

Taking the hole capture cross section o, 8s zero corresponds to the as-
sumption of quasi-thermal equilibrium between the trapped electrons and
those in the conduction band, so that (5.5) reduces to (4.13). Allowing the
hole capture cross section to be non-zero also allows recombination/generation
through the trap level, with rate

np—mnmnp,
Ri= Ry — Rep, = 5.6
' - - Tpt(n+gn1) +Tnt(p +p1/g) ( )

where
Tn,p)e = 1/ Uc(n,p)vth(mp)Nt . (57)

(If we have a nondegenerate state located at the intrinsic level, then g = 1 and
n, = p, = n;, and we recover the expression (5.1) used above for recombination
through unintentional defects.)

In our case, we have recombination through Fe traps as well as through
unintentional defects. We therefore add the recombination rate through the
traps, as given by (5.6), to the background SRH rate given by (5.1). The total
SRH recombination/generation rate in the SI layer becomes R = R, + R;.
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The importance of recombination through the trap level depends on the
sizes of the capture cross sections for electrons and holes. The condition for no
recombination/generation through the trap corresponds either to a negligible
hole population or to a zero hole capture cross section. For this work, we
have taken the cross sections as 3 x 10~*3 cm? for electrons and 1 x 1071°
cm? for holes; these values are taken from [26]. Considering the values of
electron and hole capture cross sections reported for various traps in III-V
semiconductors [40], it is unlikely that the hole capture cross section would
ever be identically zero, which means that for an electron trap the condition for
quasi-equilibrium between free and trapped electrons reduces to a condition
on the hole population: for quasi-equilibrium among the electrons, the hole
population must be negligible.

If the hole population is finite, then when we allow recombination through
the trap level we find some redistribution of the hole population, with an ac-
companying slight redistribution of the the trapped charge and of the field.
In the vicinity of the cathode barrier, where the hole population is largest, we
have an increased recombination rate and a decrease in the hole population
compared to the quasi-equilibrium case. In the body of the SI layer, where
both free electrons and holes are scarce, we have an increased generation rate
and an increase in the hole population compared to the quasi-equilibrium case.
However, since the hole populations remain small, the effect on the total cur-
rent is negligible. For example, for a 2-um layer with N, = 8 x 10! ¢cm™3
operating at 10 V (and using the cross sections given above), the effect of
allowing recombination/generation through the traps is to lower the hole pop-
ulation at the cathode barrier by two orders of magnitude and to increase the
hole population in the body of the SI layer by about one order of magnitude.
The result is to increase the hole current in the SI layer by one order of magni-
tude in the SCL regime of operation, but since the hole current constitutes an
insignificant contribution to the total current, the effect on the total current
is negligible. (The effect is slightly more pronounced in the ohmic regime of
operation, where the electron current is lower and the hole current more im-
portant.) The change in the hole currents at the center and junction planes
can be seen by comparing Figure 5.2 with the thin lines in Figure 5.5.

Thus, in the cases so far considered, we have been justified in viewing
current injection in an n-SI-n structure as an electron injection problem; the
hole populations have been small enough so as not to change the essential
character of the problem. If the hole population becomes large, however—
whether through injection directly from a p-layer, leaking across an inadequate
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n-layer, optical pumping, or avalanche injection—recombination through the
trap level can be significant, and the resulting change in the trapped carrier
concentration can be large. We turn now to a situation in which the holes play
a crucial role in determining the J-V characteristics of the structure.

5.2 Impact ionization

The models described above all attribute the steep rise in current vs. voltage
for an n-SI-n structure to trap filling in the SI layer, so that complete filling
of the traps corresponds to the center of the TFL regime. However, other
mechanisms can be responsible for such a steep rise in current. As we have
seen in Figure 4.7, the peak field in these structures can be twice the average
field; for applied biases of several volts across a layer a few microns thick,
this means that the peak field is large enough that impact ionization cannot
be ignored. In this case the behavior of the holes is very important. Holes
generated in the high-field region near the anode will flow back to the cathode
and encounter a barrier. The holes will accumulate on the cathode side of
the layer and lower the net space charge there—either by contributing a large
positive charge themselves, or by reducing the negative charge in the traps
through recombination. '

Band-to-band impact ionization is included in the numerical model as a
generation term

1
G= E(an|Jn| + ap|Jpl) (5.8)

where J, and J, are the local electron and hole current densities, and oy, and
ap depend on the local field as

onp(E) = Qo(n,p) exp(—Eo(n,p)/ |E]) (5.9)

We use this functional form because curve fits giving the values of the coeffi-
cients dg(n,p) and Eg(n p) are readily available in the literature [41, 42, 43]. (The
values we have used are taken from [43] and are shown in Table A.2. Since
our electric field varies with position in the region of highest field, using these
coefficients in this expression may overestimate the generation rate.) With
the addition of this term, the J-V characteristics for the several thicknesses
considered above take the forms shown in Figure 5.4. Here we have included
drift velocity saturation and recombination through the traps, but not field
emission. We show the J-V characteristics for this situation in the absence of



5.2 Impact ionization 67

1E+5

1E+4 4 (
1E+3- =0.125

1E+2 *
1E+1 -
1E+0
1E-1 4
1E-2 -
1E-3 1
1E-4 4 4
1E-5 1
1E-6 -
1E-7 -

0.5

current density (A/cm?)

2 microns

1E‘8 T LML RL] | T LI 1 LI R T ryvrirrs
0.1 1 10 100 1000

applied bias (V)

Figure 5.4:  J-V characteristics from numerical model, including velocity
saturation and recombination through traps, for several layer thicknesses: (i)
with impact ionization, (ii) without impact ionization.

impact ionization as well, in order to illustrate the effect of including it. (The
2-um case is the same as that in Figure 4.8.) The arrows indicate avalanche
breakdown, which appears in the model as a convergence failure when we try
to step the voltage higher. We believe that this corresponds to the destructive
breakdown that we observe in some samples under voltage-controlled opera-
tion.

That the convergence failure corresponds to a real physical phenomenon,
rather than to a mathematical artifact, can be verified by examining the calcu-
lated hole currents. In Figure 5.5 we show the hole currents and total current
for the same three planes as in Figure 5.2, now including SRH recombination
through the traps and band-to-band impact ionization. The situation without
impact ionization is shown also, for comparison. The rise in the hole cur-
rents below breakdown is due to avalanche injection, that is, to generation of



68 ‘ Chapter 5. Avalanche injection and two-carrier effects

1E+0
1E-1 { — with impact ionization

1E-24 — Without impact ionization
1E-31
:Eg total current +

1E-6

current density (A/cm?)

1E-8- hole currents: j]
1E-13+
LRI lll Ll vy

1E-7 -
7
1E-9 center anode
1E-10 junction
1E-14 -
0.1 1 10 100 1000

1E-11
cathode
1E-15+ —-junction
applied bias (V)

1E-12
1E'16 T T T T T l‘r"llll_ll_ﬂl-—i

Figure 5.5: J-V characteristics for 2-um layer, showing total current and
also hole currents in junction planes and in center of SI layer: (i) with impact
ionization, (ii) without impact ionization.

electron-hole pairs by impact ionization in the high-field region at the anode.

The holes participate in a positive feedback mechanism, which is consis-
tent with the abrupt breakdown and low critical voltages that we observe.
The role of the holes in determining the critical voltage in the presence of
impact ionization can be seen in Figures 5.6 and 5.7. Here we show an energy
band diagram as well as the spatial variation of the electric field, free carrier
concentrations, and trapped electron concentration for a 2-um layer operating
just below breakdown. To illustrate more clearly the effect of impact ioniza-~
tion, we also show the form that these distributions would take if we did not
include it. We can see that the holes provide positive feedback for avalanche
breakdown, as follows. Electron-hole pairs are generated in the high-field re-
gion at the anode. The electrons flow out into the anode, but the holes flow
back across the SI layer and accumulate in the vicinity of the cathode barrier.
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Figure 5.6: Energy band diagram for 2-um layer operating under avalanche
injection, just below breakdown. (13) with impact ionization, (ii) without im-
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The large hole population there reduces the net space charge, which changes
the shape of the barrier. (In the case shown, the reduction in space charge is
principally the result of a reduction in the trapped electron concentration, due
to recombination; but if we had not allowed recombination through the traps,
the hole population at the cathode barrier would be several orders larger, and
the positive space charge due to the holes themselves would have a similar
effect.) The plane of zero field moves further away from the cathode junction,
in effect decreasing the thickness of the layer. The potential drop then occurs
over a shorter distance, so that the peak field increases. The increase in the
field at the anode causes an increase in the generation rate due to impact ion-
ization, which in turn increases the hole population at the cathode, and so on.
(Similar phenomena have been observed in surface breakdown of both GaAs
[44] and InP [22].)

We emphasize that the increased current that flows in the presence of im-
pact ionization is due to increased electron injection resulting from a charge
redistribution caused by the accumulation of holes in the vicinity of the cath-
ode barrier. It is not due to the current carried by the generated holes them-
selves. The hole accumulation at the cathode barrier contributes an additional
forward bias to the n-SI cathode junction, lowering the barrier height for elec-
tron injection. (The reduction in barrier height as compared to the situation
without impact ionization can be seen in the inset to Figure 5.6.)

What we have shown for the cases of avalanche breakdown in Figures 5.4
and 5.5 is actually only a portion of the complete J-} curve. In the presence
of impact ionization, our structure exhibits negative differential resistance as
shown in Figure 5.8. Breakdown (or convergence failure in the model) occurs
when we attempt to step the voltage past the turning point. The J-V curve
has a third, positive-differential-resistance branch at very large currents, not
shown in the figure, so that the overall curve has an “S” shape. Over some
range of voltages, there are three possible current states, only two of which
are stable. Breakdown under voltage-controlled operation results from the
current snapping up to the third branch of the J-V curve as the turning point
is passed.

(The inset to Figure 5.8 is provided for readers who may be wondering
how a double-valued J-V characteristic is calculated using voltage boundary
conditions. The five solutions indicated by crosses (the last two of which are
indistinguishable on the scale of this inset) are acquired in order of increasing
applied voltage. The first three of these lie on the lower, positive-differential-
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resistance branch of the curve, while the fourth and fifth lie on the upper,
negative-differential-resistance branch. Each successive solution is used as the
initial guess for the calculation of the next. In the vicinity of the turning point,
the calculation is very unstable, and the solutions corresponding to the two
branches lie very close together. Thus, starting from a solution on the lower
branch and increasing the voltage slightly, one sometimes finds a solution on
the upper branch rather than on the lower branch—as, for example, in going
from the third to the fourth cross here. The next higher-voltage solution then
yields a decrease in current density. (I have resisted the temptation to provide
an inset to the inset in order to illustrate this point.) When we thus detect
that a solution on the upper branch has been found, we can change the sign
of the voltage step and successively reduce the applied voltage so as to trace
out the upper branch. Dots in the inset show upper-branch solutions acquired
in order of decreasing applied voltage.)

Current flow in the presence of such an “S-type” (current-controlled) neg-
ative differential resistance has been shown to be spatially unstable [31]. That
is, if the one-dimensional J-V curve has the form shown in Figure 5.8, a slight
nonuniformity in current density will develop into filamentary current flow,
with most of the area of the device operating on the lower branch of the J-V
curve but with most of the current flowing in a narrow filament operating on
the upper branch. Depending on load conditions and heatsinking, this results
in thermal runaway [31] and catastrophic failure of the device, and is consistent
with what we see experimentally.

All of this is due to avalanche injection of holes. Thus, in the presence
of impact ionization, the holes play a crucial role, and this fact has a number
of implications for modeling. We are no longer dealing with a single-carrier
problem. In order to predict the breakdown behavior, the two-carrier problem
must be solved self-consistently. Deriving an avalanche multiplication factor
from the field profile calculated for the single-carrier problem without impact
ionization would yield breakdown voltages larger than those calculated with
the self-consistent model.

In the presence of impact ionization, the hole population at the cathode
side becomes large enough that several of our earlier simplifying assumptions
fail. There are enough holes to significantly change the occupation function
for the traps: we can no longer assume quasi-thermal equilibrium between the
trapped and free electrons, but must employ a separate quasi-Fermi level for
the traps, as in (5.5). This results in a much lower concentration of trapped
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Figure 5.8: J-V curve for 2-um layer, showing current-controlled negative
differential resistance caused by avalanche injection. Magnified view (inset,
drawn on linear scale) shows solutions in vicinity of turning point. Crosses
indicate solutions found by increasing the applied voltage; dots indicate solu-
tions found by decreasing the applied voltage.

electons in the vicinity of the cathode than would have been predicted under
the quasi-equilibrium assumption. Recombination mechanisms that we could
have ignored but for impact ionization now become significant: SRH recom-
bination through the traps, as in (5.6), was a negligible effect without impact
ionization; with impact ionization, it serves to depopulate the traps and con-
tributes to the positive feedback loop. We also predict that in the presence of
impact ionization the hole population at the cathode can be large enough to
allow for considerable radiative recombination.

Radiative recombination can be included in the model as an extra source
term R.oq = Bnp, where B ~ 107! cm?/s [26], so that the net genera-
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Figure 5.9: Generation and recombination rates under avalanche injection,
for 2-um layer operating just below breakdown.

tion/recombination rate is G — R, — Ry — R.qq. For our 2-um layer operating
just below breakdown, the contributions of the various terms are shown in
Figure 5.9. Radiative recombination would be several orders larger were it not
for SRH recombination through the traps.

At first, it may not have appeared that the field could be high enough for
us to invoke avalanche breakdown as an explanation for device failure, even
including a factor of 3/2 or 2 from the solution of the SCL problem. However,
we now see that if we include impact ionization in the model, the peak field
may be even larger for the same average field, due to the feedback mechanism
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and field redistribution just described. In Figure 5.7b we compared the field
distributions with and without impact ionization included in the model for a
2-um layer operating just below breakdown. The average field for this case
is 1.6 x 10° V/cm, but in the presence of impact ionization the peak field is
4.3 x 10° V/cm.

The bias level for the plots of Figures 5.6 and 5.7 is just below avalanche
breakdown if we include impact ionization. The distribution of filled traps
(Figure 5.7c) at this voltage illustrates an important point. When we include
impact ionization, the current is rising steeply at this voltage, but the traps
are still mostly empty. Depending on the trap density and the thickness of
the SI layer, the avalanche breakdown voltage can be larger than, equal to, or
(most importantly) lower than the trap-filled voltage. The critical voltage will
correspond to whichever is lower.

For characterization, therefore, the critical voltage alone cannot be used
to estimate the equilibrium density of empty traps in the manner that the
simplifed theory would suggest. From a design perspective, the critical voltage
for a thick layer may be much lower than the trap-filled limit predicted by the
simplified theory. Because the avalanche breakdown voltage depends roughly
linearly on the thickness of the SI layer, while the trap-filled voltage goes as
the square of thickness, the critical voltage cannot be expected to continue to
obey (3.5) for thick layers. (The predicted dependence of critical voltage on
trap density and thickness is illustrated in Figures 7.2, 7.7-7.10, and 8.1.)

Finally, we again stress that while trap-filling is a reversible process,
avalanche breakdown by the mechanism we describe here is not. Avalanche
injection in this structure leads to a current-controlled negative differential
resistance which is conducive to filament formation and thermal runaway.

Thus, besides predicting lower critical voltages than the simplified theory
would suggest, the numerical model also predicts a major qualitative difference
in the critical behavior.
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Chapter 5. Avalanche injection and two-carrier effects
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Chapter 6

Comparison of models
with experiment

This work was originally undertaken in order to explain a seemingly anomalous
short-circuit failure mechanism that we saw while trying to characterize early
Fe:InP samples. With the inclusion of impact ionization in a self-consistent

_two-carrier model, we now have a way of explaining this observation. The
aim of this chapter is to do a more quantitative comparison of the models
with experiment, and to verify the main features of the critical behavior. If
we can verify the accuracy of the model, we can then go on and use it as a
design tool. Indeed, we will show that the numerical model gives significantly
better agreement with experiment than did the simplified theory, and that it
is consistent with the observed critical behavior.

6.1 Summary of predictions of critical behavior

We use the term “critical behavior” to refer loosely to a steep rise in current
as a function of voltage, regardless of the physical mechanism responsible.
The “critical voltage” is more precisely defined as the voltage below which the
current does not exceed some specified value. The critical voltage is typically
associated with a steep rise in current, but depending on the current criterion
it may occur in any part of the I-V curve. (We use the terms “trap-filled
voltage” and “breakdown voltage” to designate a critical voltage that results
from trap filling or avalanching respectively.)

The emphasis here is on the prediction of the critical voltage, since this
will typically be the characteristic of the SI layer that limits the operating
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range of a device. In Chapter 2 we introduced the criterion of J < 1 A/cm?
for the critical voltage, and we will retain this definition throughout the work.
For a typical buried heterostructure (BH) laser with stripe area 1 pm Xx 250
pm, contact area 50 um X 50 um, and threshold current density 1 kA/cm?,
a leakage current of 1 A/cm? would represent 1% of the threshold current.
J <1 A/cm? is therefore a reasonable performance criterion for the blocking
layers in a BH laser. For a detector, a more stringent criterion would be used.
Since the current is generally rising steeply, however, our conclusions are not
sensitive to the particular current density chosen.

The predictions of the simplified and numerical models for this critical
voltage as a function of SI layer thickness were summarized in Figure 2.2, for
two trap densities. Recall that the simplified theory predicts a steep rise in
current associated with the filling of the traps. (As we discussed in Chapter
3, this can be viewed as a filling in energy as well as a filling in space.) The
trap-filled voltage is given by (3.5), and is proportional to the density of empty
traps at equilibrium and to the square of the thickness of the SI layer. Provided
there are enough traps that the critical voltage is not reached in the ohmic or
SCL regime, the critical voltage is just the trap-filled voltage, and V. vs. L

- appears as a straight line on a log-log plot.

Using the numerical model, we predicted significant deviations from the
simplified theory. In Chapter 4 we showed how diffusion from the contact
layers would reduce the number of available traps and smooth out the trap-
filled-limited regime (that is, reduce the slope of the J-V curve in the trap-
filled limit), thereby reducing the critical voltage for thin layers below that
predicted by the simplified theory. In Chapter 5, we went on to show that
for thicker layers and larger trap densities, avalanche breakdown would occur
before all the traps are filled—again leading to critical voltages well below
those predicted by the simplified theory.

We can summarize the effects of the various mechanisms discussed in
Chapters 4 and 5 by showing the changes they produce in a plot of V., vs. L
(Figure 6.1). In all of the numerical models, the behavior for thin layers is
dominated by diffusion from the contacts, as shown in Figure 2.2. The behavior
for thicker layers is dominated by impact ionization, so in the calculations for
Figure 6.1 we include that mechanism next, and then show the successive
effects of SRH recombination/generation, drift velocity saturation, negative
differential mobility, and field emission from traps on the resulting avalanche
breakdown voltage. (We have added impact ionization next, because the other
mechanisms do not affect the critical voltage except in the presence of impact
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Figure 6.1: Critical voltage as a function of SI layer thickness, calculated
with numerical model, showing effect of various mechanisms: (1)—trap filling
plus diffusion only; (2)—same as (1) but with impact ionization; (3)—same as
(2) but with recombination through traps; (4)—same as (3) but with simple
velocity saturation; (5)—same as (4) but with negative differential mobility;
(6)—same as (5) but with field emission from traps. N; = 4 x 10'® cm™ and
Ny = 5 % 10'® cm™3 in SI layer; Ny = 1 x 107 cm™3 in contact layers.

ionization. That is, while they affect the shape of the J-V characteristic below
the trap-filled limit, these other mechanisms do not affect the position of that
limit. When the critical behavior is due to avalanching, however, they have
significant effects.) The reasons for these effects can be understood on the basis
of the field profiles and trapped carrier distributions discussed in Chapters 4
and 5: SRH generation near the anode increases the hole current available for
impact ionization, but SRH recombination at the cathode reduces the hole
population there, modifying the electrostatic feedback mechanism. Velocity
saturation makes the distribution of trapped carriers more uniform, and lowers
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the breakdown voltage by increasing the peak field for a given overall voltage.
Negative differential mobility further lowers the breakdown voltage by reducing
the trapped carrier concentration in the low-field (high-velocity) region near
the cathode. Field emission returns the situation to one more nearly like the
constant-mobility case by lowering the trapped carrier concentration near the
anode.

We emphasize that the behavior for thin layers is the result of trap filling
in all the cases we have discussed. Diffusion from the contacts reduces the
number of initially empty traps, so that fewer injected electrons are needed to
fill them. The actual trap-filled voltage is therefore lower than the trap-filled
limit of the simplified theory—but the mechanism is the same and the cause
of the steep rise in current is the same. The critical behavior is due to trap
filling, and is reversible.

As the layer thickness is increased, the fraction of the traps that are filled
by diffusion is reduced, and the actual trap-filled voltage approaches that pre-
dicted by the simplified theory. As the trap-filled voltage increases, however,
it becomes larger than the voltage needed for avalanche breakdown, and the
critical behavior of the device is then governed by impact ionization rather
than by trap filling. As we saw in Chapter 5, the critical behavior due to

- avalanche injection is destructive.

We thus expect two qualitatively different kinds of critical behavior: a
smooth, reversible rise in current due to trap filling, and an abrupt, irre-
versible rise in current due to avalanche breakdown. We expect to see trap
filling for thin layers and low trap densities, and we expect to see avalanche
breakdown for thicker layers and higher trap densities. As we increase either
the SI layer thickness or the trap density, we expect a transition from reversible
to irreversible critical behavior.

6.2 Growth and processing of test structures

To evaluate the accuracy of the numerical model, we compare its predictions
with experimental results. A series of planar n-SI-n structures was grown
for this purpose, using atmospheric-pressure non-hydride metalorganic chem-
ical vapor deposition (MOCVD). The reactor was a horizontal quartz cell
with a graphite susceptor heated by a mercury lamp. The sources were
trimethylindium (TMI), tertiarybutylphosphine (TBP), bis-cyclopentadienyl
iron (ferrocene), and disilane. Growth conditions were held constant at values
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Table 6.1: Growth conditions for n-SI-n test structures.

thermocouple temperature 620 °C
pressure 1 atm (unregulated)
growth rate 4 pm/hr

EFFECTIVE FLOW RATES:
TMI (20°C, 1100 torr) 280 sccm
TBP (20°C, 1100 torr) 125 sccm
ferrocene (15.3°C, 1100 torr)  1.4-86 sccm (SI layer only)
disilane, 200 ppm in hydrogen 0.13 sccm (n-layers only)
hydrogen (carrier) 5 slm

that we previously had shown [13] to yield good semi-insulating material; these
are listed in Table 6.1. Only the thickness of the SI layer and the ferrocene
concentration were intentionally varied.

The epitaxial layers were grown on Sn-doped n-type InP substrates. The
substrate doping is on the order of 10!® cm™3, so the potential drop in the
substrate can be ignored. The n-type buffer and cap layers were deliberately
rather lightly doped to facilitate comparison with the theory, which assumes
nondegenerate statistics for the conduction band. Hall measurements on 2.5-
um-thick n-type calibration layers grown under the same conditions on com-
mercial semi-insulating substrates show an electron concentration of about
1.3 x 10! cm™3. The n-layers in the n-SI-n structures were approximately 1.5
pum thick, to keep the anode depletion region within the epitaxial material for
either polarity.

Calibration of doping levels in the SI layers is more difficult. One can mea-
sure the Fe content of the SI layer by secondary ion mass spectrometry (SIMS),
but the Fe concentration does not necessarily correspond to the trap density.
(Only substitutional Fe contributes active traps, but SIMS measures inter-
stitials and precipitates as well.) Deep level transient spectroscopy (DLTS)
using samples co-doped with Si would give a more direct measure of the trap
density. Unfortunately, the trap density we wish to measure is on the order
of 10'5-10'" cm3, and the n-type co-doping needs to be significantly larger
than that—so it becomes difficult to deplete the layer.

If the background doping were constant, it would be possible to estimate
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trap densities from the I-V characteristics of lightly-doped samples—that is,
ones for which we can be sure that the critical behavior is due to trap filling.
We did in fact attempt this, but found that the variation in background doping
among the samples, which were grown over a period of several days, was too
large to permit calibration of the trap density by this method. SIMS analysis
revealed a large unintentional Si concentration in the SI layers of some of
these wafers, the source of which has not been identified. In the end, for
our quantitative comparison with the theory we have relied on heavily Fe-
doped samples for which SIMS shows an Fe concentration well in excess of the
published solubility limit for our growth temperature [34] and for which the Si
concentration in the SI layer is below the SIMS detection limit. We therefore
guess that the trap density in these layers is on the order of the solubility limit
and that the background donor concentration is on the order of that found in
our undoped material.

The principal test of the model is therefore the prediction of the critical
behavior as a function of SI layer thickness. We assume that growth conditions
remain constant from run to run, and vary the growth times to give samples
with SI layers of approximately 0.3, 0.5, 1, 2, and 4 um. Because of the spatial

~ variation in the height of the gas-phase boundary layer, we also have a signif-

icant variation in the layer thickness along each wafer, so that a few samples
provide a large number of different thicknesses. The thicknesses were mea-
sured by scanning electron microscopy of stained cross-sections on calibration
wafers grown with InGaAs marker layers. (Thanks to Archie Holmes for the
InGaAs recipe.)

For electrical measurements, “ohmic” contacts were made to the n-type
cap layer and to the substrate. On the epi side, evaporated AuGe/Ni/Au was
lifted off to form dots, with diameters ranging from 20 to 100 ym. On the
back side, AuGe/Ni/Au was evaporated to form a broad-area contact, and the
contacts were alloyed at 380°C in the rapid thermal annealer. Using the top
metal as a mask, we then etched through the n-type cap using a mixture of
one part hydrochloric acid to four parts phosphoric acid. To obtain a stable
surface, we followed this isolation etch with a 15-second dip in buffered HF.
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6.3 Current-voltage measurements

Current-voltage (I-V) measurements were done on a Hewlett-Packard 4145B
semiconductor parameter analyzer. The measurements were performed us-
ing voltage control because this method yielded linear I-V curves for several
large calibration resistors. Current-control measurements on the calibration
resistors showed a large nonlinearity around 1 nA, presumably due to range-
switching in the instrument.

The measurements shown here were performed in the dark at uncontrolled
room temperature. For the power levels dissipated in our devices below break-
down, we estimate a temperature rise on the order of several mK with respect
to the back contact, so elaborate heat sinking should not be necessary.

Samples were set on a gold-coated copper stud which was in turn probed
to make the back contact. Top contacts were made with a beryllium-copper
probe tip, and care was taken to set it down gently. Tungsten probes and more
aggressive pressure generally resulted in larger currents and less reproducible
results, presumably due to damage on the surface.

The use of coaxial leads up to the probe tips reduced the noise floor
considerably. With these probes, an open circuit measures about 10! €;
a typical low-bias resistance for one of our 100-um-diameter heavily-doped
devices is 10° Q. For the set of measurements shown here, both medium and
long integration times on the 4145B yielded similar results, without much
hysteresis, so we believe that these results are representative of the steady
state. For these measurements, the total current also scaled approximately
quadratically with the device diameter, so we believe that these results are
representative of bulk current injection.

The measurements shown here were all performed in an area of roughly 0.4
x 0.8 cm in one upstream corner of the wafers. Most of the longitudinal thick-
ness variation discussed above occurs within this area. (For wafer-to-wafer
comparison, it is important that measurements be made in similar positions
on each wafer.) For the present work, we focus on the thickness dependence
of the critical behavior.

In Figure 6.2 we show representative I-V curves from the thinner down-
stream region of each of five wafers, all grown with an effective ferrocene flow
of 65 sccm. The thicknesses of the SI layers are 0.29, 0.51, 0.95, 1.9, and 3.6
pm. The nature of the critical behavior as we move from thinner to thicker
layers agrees well with the predictions of the numerical model: For the thinnest
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Figure 6.2: Measured I-V curves for n-SI-n structures of different SI layer
thicknesses, doped with 65 sccm effective ferrocene flow (which exceeds the
solubility limit.) Current densities were obtained by dividing the measured
current by the mask area of the top contact.

layer we have a sloping TFL regime, which is characteristic of a situation in
which the bandbending at the interfaces takes up a significant fraction of the
total thickness. For thicker layers we see a steeper TFL regime, and finally for
the thickest layer we have an abrupt, destructive breakdown.

The critical behavior for the four thinner layers is reversible and repeat-
able, as is consistent with trap filling. The critical behavior for the 3.6-pm
layer is irreversible: after the initial measurement, subsequent measurements
on the same device show a short. Inspection of the failed devices with a light
microscope typically reveals a small crater, which is consistent with the fila~
ment formation one would expect under avalanche injection.

The transition from reversible to irreversible behavior with increasing SI
layer thickness was also observed within a single wafer. For the 1.9-um wafer,
the thickness on the upstream edge ranges up to approximately 2.7 ym. De-



6.3 Current-voltage measurements 85

100 ~
] simplified theory ——/
/
: destructive
breakdown
] numerical model
- A
[0)]
g experiment
S 10— P
= :
8 ] reversible
I trap filling
b /
/
/
,l
1 f- T T T LA BN LA | T T T T
0.1 1 o

Sl layer thickness (microns)

Figure 6.3: Critical voltage a function of thickness, for large trap density.
Experimental results show transition from reversible trap filling (dots) to de-
structive breakdown (circles) at a thickness of about 2 pm; numerical model
shows it at about 1.5 um. (Simplified theory does not predict this transition.)
Experimental results are from wafers doped with 65 sccm ferrocene. Theory
curves use N; = 4 x 10'® cm~2 and Ny = 5 x 10'® cm™3 in SI layer, and Ny,
=1 x 10'7 cm™? in contacts. Numerical calculations use pn, = 1000 cm?/V-s.

vices at positions corresponding to thicknesses of 2.1 and 2.6 um showed abrupt
irreversible breakdown, while devices further downstream (and thus with thin-
ner SI layers) showed smooth, reversible behavior.

The thickness-dependence of the critical voltage, both from wafer to wafer
and within wafers, is shown in Figure 6.3. The transition from reversible to
irreversible behavior is labeled. In this figure we also show the critical voltage
as a function of layer thickness as calculated in the simplified and numerical
models, using the doping levels shown in the figure caption. For the numerical
model, the physics included corresponds to the lowest set of critical voltages
shown in Figure 6.1.
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Before considering the details of the comparions between the numerical
model and the experiments, we note that, as we would expect, the numeri-
cal model gives much better qualitative agreement with experiment than does
the simplified theory. The numerical model predicts the reduction in critical
voltage at both ends of the thickness range, as compared with the trap-filled
limit of the simplified theory, and gives us a means to understand this reduc-
tion in terms of the different physical processes that dominate in the different
thickness ranges.

Assuming that the critical voltage coincides with the trap-filled limit, the
simplified theory predicts that a given fractional change in the SI layer thick-
ness will result in the same fractional change in the critical voltage, regardless
of the layer thickness. That is, in the simplified theory, (AVrrL/VrrL)/(AL/L)
= 2 for any L. The numerical model, on the other hand, predicts that a given
fractional change in SI layer thickness will result in a larger fractional change
in the critical voltage for thin layers and a smaller fractional change in the
critical voltage for thick layers, which is consistent with experiment.

Finally, the numerical model predicts the observed qualitative change in
the nature of the critical behavior, from smooth and reversible to abrupt and
destructive—which the simplified theory does not.

In Figure 6.3, the five clumps of points correspond to five separate wafers
with different growth times and therefore different average SI layer thicknesses.
Within each wafer, the six points range from positions near the upstream edge,
where the layers are thickest, to approximately 0.8 cm downstream, where the
layers are thinner. That all thirty data points do not lie on a smooth curve
indicates that the variation in performance is not entirely due to the variation
in SI layer thickness. This suggests that, in addition to the thickness variation
as we move downstream, we also have some doping nonuniformity.

A similar effect is seen Figure 6.4, where we show critical voltage as a
function of SI layer thickness for another series of five wafers, this time with
an effective ferrocene flow of 11.4 sccm. Again, we have a performance reduc-
tion from upstream to downstream within each wafer that cannot be entirely
explained by the thickness variation along the wafer. The remaining variation
could be the result either of a reduction in the trap density, or an increase in
the background level, or an increase in the n-doping in the contact layers as
we move downstream. If the n-doping in the contacts is low enough that the
anode gets fully depleted, then the thickness variation in the contact layers
would also contribute to the degradation downstream, since less voltage would
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Figure 6.4: Critical voltage a function of thickness, for medium trap density.
These experimental results are from wafers doped with 11.4 sccm ferrocene.
As in Figure 6.3, the thickest devices in each group of points are from the
upstream area of the wafer, with thickness decreasing downstream. All show
reversible critical behavior.

be dropped across a thinner anode. (One should also keep in mind that the
doping can vary significantly from wafer to wafer. SIMS results for the 3.6-um
wafers in these series show a larger Fe concentration on the substrate side of
the SI layer. If the first half micron of Fe:InP in general has a larger trap
density than the rest of the layer, then the average trap density will be higher
in the thin layers than in the thicker ones.) In Chapter 7 we model the effects
of various doping changes, and estimate the variation in doping that would be
needed to account for the effects shown here.

For the 65-sccm data (Figures 6.2 and 6.3), we saw a transition from
reversible to irreversible breakdown as we increased the layer thickness for a
constant doping level. We can also see such a transition as we increase the
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Figure 6.5: Measured I-V curves for 3.6-um-thick SI layers doped with 2,
11.4, and 65 sccm ferrocene. Current densities were obtained by dividing the
measured current by the mask area of the top contact. Currents for 11.4 and
65 sccm cases are externally limited at the top of the curves shown. 65 sccm
case shows destructive breakdown.

doping level for a given thickness, which is apparent in the data from the
thickest of the five- wafers in Figures 6.3 and 6.4. For any of the points with

L > 2.1 pm, we have reversible trap-filling at the lower doping and irreversible
breakdown at the higher doping,.

We grew a third series of five wafers, like those shown in Figures 6.3 and 6.4
but using an even lower Fe flow (2 sccm). The background donor concentration
in this series, unfortunately, was too large and too variable for the resulting
plot of V, vs. L to be useful. For particular thicknesses, however, we can
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compare the I-V curves with 2, 11.4, and 65 sccm Fe to show the progression
of critical behavior with increasing trap density (Figure 6.5).

6.4 Difficulties

A quantitative comparison of the numerical predictions of the critical voltage
with experiment is complicated by our ignorance of several important prop-
erties of the material. The numerical curve shown in Figure 6.3 is calculated
for a trap density N; of 4 x 10'® cm™? and a background donor density Ny of
5 x 10'® cm™3 in the SI layer, with an n-layer doping Ny, of 1 x 10!7 cm™3.
The value of Ny, is obtained from Hall measurements on calibration samples,
as mentioned above. The trap density is taken as the published solubility limit
for our growth temperature, according to the data of Wolf et al. {34], because
we have reason to believe (both from SIMS and from old resistivity-vs.-doping
data [13]) that the Fe concentration in this series of wafers exceeds the solubil-
ity limit. The background doping level is consistent with Hall measurements
on our undoped material [4] (performed by Archie Holmes)..
~ The fit shown in Figure 6.3 includes all of the physics described in Chap-
ters 4 and 5, with the exception of field emission. A nonlinear velocity field
curve as described by (4.10) was used for the electrons, but with a low-field
mobility of 1000 cm?/V-s rather than the 2000 cm?/V-s shown in Figure 4.5.
This results in a velocity-field curve as shown by the solid line in Figure 6.6.
While we measure a room-temperature Hall mobility of 2400-4400 cm?/V-s
on our 1 x 10}” cm~3 n-type material, it would not be surprising if the mo-
bility were lower in the SI material, especially if it is doped in excess of the
solubility limit. For the fit shown in Figure 6.3, only the value of 4, has been
adjusted; values of other constants were taken from the literature (as shown
in Appendix A.)

We have lowered the value of up, to 1000 cm?/V-s because using the larger
value would result in the prediction of avalanche breakdown voltages lower
than our measured ones. (A discrepancy between a given measured breakdown
voltage and a higher predicted value can be readily explained on the basis of
material or processing nonuniformities; a discrepancy of the opposite sense
is more difficult to account for.) With 1000 cm?/V-s, we predict avalanche
breakdown for somewhat thinner layers than those for which we observe it,
but we obtain good overall agreement with the measured values of the critical
voltage.
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Figure 6.6: Numerical velocity-field curves resulting from use of smaller low- |
field mobilities: (i) un, = 1000 cm?/V-s; (ii) ftn, = 100 cm?/V-s. The 2000
cm?/V-s curve from Figure 4.5 is reproduced here for comparison.

On the other hand, the model as used for the fit of Figure 6.3 gives poor
agreement with the shapes of our measured I-V curves below breakdown. A
set of measured curves was shown in Figure 6.2; corresponding curves ob-
tained from the model are shown in Figure 6.7. The sublinear regime that
we predict for intermediate bias levels on the thicker layers does not agree
with our experimental results. (Although such a sublinear regime has not
been reported in Fe:InP, this feature does strongly resemble behavior seen in
low-temperature-grown (LT) GaAs [38].)

In the model, the sublinear regime shown in Figure 6.7 results from the
negative differential mobility section of the velocity-field curve. Inclusion of
field emission, as discussed in Section 4.4, reduces but does not entirely elim-
inate the sublinearity for thick layers. The resulting I-V curves are sill not in
very good agreement with experiment, and the slope of log Ve, vs. log L in the
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Figure 6.7: Calculated I-V curves for n-SI-n structures with SI layer thick-
nesses corresponding to those of Figure 6.2, using model parameters as in
Figure 6.3. ‘

avalanche breakdown regime is somewhat larger than what we observe.

One might argue that our trap density is much lower than we have as-
sumed, or our background doping much larger, so that the slope of our mea-
sured I-V curves below breakdown is due to trap filling. For the fit of Figure
6.3, we assumed a trap density IV, corresponding to the published solubility
limit at our growth temperature, where our growth temperature was measured
by a thermocouple inside the susceptor. The actual surface temperature, and
therefore the solubility limit, may be lower. Given that the trap-filled-limited
voltages observed on our intermediately-doped (11.4 sccm) samples show a
difference N; — N; on the order of 10!® ¢cm—3, however, a comparison of our

11.4-sccm and 65-sccm data suggests that, for the latter, N; — IV; is indeed on
the order of 4 x 10! ¢cm3,

We also considered the possibility that the electron mobility in our sam-
ples is much lower than we have assumed, so that the velocity saturates only



92 Chapter 6. Comparison of models with experiment

at higher biases and negative differential mobility is eliminated. Assuming a
very low electron mobility—on the order of 100 cm?/V-s—yields I-V charac-
teristics that are in much better agreement with experiment, and also gives
good agreement for the values of the critical voltage as a function of thickness
and for the transition from reversible to destructive breakdown. (In this case
the predicted avalanche breakdown voltages are on the order of xx% higher
than those we observe, but as we have pointed out above, this discrepancy is
not difficult to explain. Given the instability of the current distribution under
avalanche injection, and given that we have not included impact ionization
into or out of the traps, we might expect that measured breakdown voltages
would be lower than those we predict with the present model.)

Using a low value of u,, in the expression (4.10) yields I-V curves that
show the characteristic shape exhibited by the 11.4-sccm curve in Figure 6.5
and reported by Huang et al. [12], Wolf et al. [34], Tsang et al. [14], and oth-
ers. In the model, however, the “bump” in the SCL regime is a result of the
decidedly strange velocity-field curve that results from plugging pn, = 100
cm?/V-s into (4.10), shown as the dotted line in Figure 6.6. The similarity
of the shapes of the resulting I-V curves with the shapes of measured curves
may be purely coincidental; without a physical explanation for the improbable
v(E) behavior shown, we are reluctant to attribute the measured shape solely
to velocity-field phenomena. The difficulty with the low-mobility approach is
in explaining the low mobility itself.

Lacking such an explanation, we leave the shape of the I-V characteristics
below breakdown as an unsolved problem requiring further work. Using the
present model, with p,, = 1000 cm?/V-s and other parameters taken from the
literature, we do obtain excellent agreement with our experimental results for
the critical voltage as a function of thickness. We also have fairly good agree-
ment for the transition from reversible trap filling to destructive breakdown.
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Chapter 7

Numerical results

In Chapters 4'and 5 we developed a numerical model, adding physical mech-
anisms one at a time and illustrating their effects using calculations based on
“best-case” dopings for the SI layer and on materials parameters taken from
the literature. In Chapter 6 we found that this model gives good agreement
with our experimental results for the critical voltage as a function of thickness.
It also predicts the transition from reversible critical behavior to destructive
breakdown that we observe. While discrepancies remain with regard to the be-
havior in the SCL regime, we find that the model provides a useful description
of critical behavior in Fe:InP.

Having thus evaluated the accuracy of the model, we can use it to predict
performance variations for an n-SI-n structure as a function of various design
and materials parameters. In this chapter we explore the sensitivity of the nu-
merical predictions to several of these parameters. In addition to illustrating
the properties of the model, this helps us to predict what sort of performance
improvement can be expected as a result of changes to the material that we
might attempt. Knowing the sensitivity of the results to changes in the ma-
terial properties is also a useful guide to the identification of unintentional
variations in the material.

We then return to the design implications of these results, and state some

design rules in contrast to those that would be suggested by the simplified
theory.
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7.1 Sensitivity to materials parameters

In this section we examine the sensitivity of the predicted critical voltage to
changes in various model parameters. We look first at the effects of changes
in doping levels—trap density and background donor concentration in the SI
layer, and donor concentration in the contacts—and then at the effects of
changes in other properties of the material and of the trap.

Because the SI layer thickness L is the most likely thing one would inten-
tionally vary in a design situation, we show these sensitivities in the form of
families of V., vs. L curves. We show the effects of order-of-magnitude changes
in both directions from the set of parameters used to match our experimental
results for our best material from Chapter 6.

Contact doping. For the calculations in Chapter 6, we used an n-doping
of 1 x 10*” cm™2 in the contacts, which was consistent with the measured
doping level for our experiments. For a trap density of 4 x 10 cm~3 and
a background donor concentration of 5 x 10!® cm™2 in the SI layer, we show
in Figure 7.1 the effect of varying the contact doping over the range 101¢-

10" ‘cm™3. As we would expect, the contact doping is important for thin

layers. Increasing the donor concentration in the contacts increases the number
of electrons that diffuse into the SI layer, reducing the number of available
traps and thus lowering the critical voltage. (In addition, increasing the donor
concentration reduces the width of the anode depletion layer, which increases
the potential drop across the SI layer.) For a lower trap density, the effect for
thin layers would be even more pronounced.

In a real device, the contact doping is likely to be higher than the 1 x 107
cm™3 that we used in our experiments. To show the sensitivity of the critical
voltage to model parameters in comparison with our experimental results, we
continue to use Ny, = 1 x 1017 cm™3 for the calculations in this section. In the
next section we switch to a larger contact doping for use in developing design
rules for the SI layer.

Trap density. In Figure 7.2 we show the effect of increasing or decreasing
the trap density in the SI layer by an order of magnitude from our value of
4 x 10'® ¢cm~3. Because we have assumed a background donor concentration
of 5 x 10" cm™3, reducing the trap density to 4 x 10'® cm~2 would result in a
net concentration of 1 x 10 cm™3 of uncompensated background donors, so
the material would not be semi-insulating. The critical voltage in this instance
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Figure 7.1: Sensitivity of critical voltage to donor concentration in n-layers;

for N; = 4 x 10'® cm™3 and Ny = 5 x 10 ¢cm™2 in the SI layer. Values of

Ny, are: 1 x 106, 2 x 108, 5 x 106, 1 x 107, 2 x 10'7, 5 x 10", and 1 x 10'8
-3

cm™°,

would occur at very low voltage, in the ohmic regime of operation.

On the other hand, increasing the trap density to 4 x 10'7 cm~3 takes us
out of the range of Fe-doping levels that have been reported so far. It is in-
structive to predict the effect of such an improvement in trap density, however,
so as to gauge the benefit that might be gained by achieving an improvement
in solubility or activation. We see that the effect would be significant for thin-
ner layers, where the critical behavior is still governed by trap filling, but that

increasing the trap density would be less effective for improving the avalanche
breakdown voltage for thicker layers.

Background doping. The concentration of unintentional donors in the
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SI layer is one of the most difficult properties to control. In Figure 7.3 we
show the effect of an order of magnitude variation in both directions about
5 % 10'° cm™3. Again, for our trap concentration of 4 x 10'® cm™3, increasing
the background doping to 5 x 10*® cm~3 would result in uncompensated donors
and a critical voltage too small for the scale of the figure.

Except in cases in which the background donor concentration is on the
order of the trap density, decreasing the background provides little improve-
ment in the critical voltage. If the critical behavior is due to trap filling, then
the critical voltage depends largely on the difference N; — Ny, so that changes
in Ny have little effect if Ny <« N;.
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We have seen that in general the doping levels in the SI layer do not
have a strong effect on the critical voltage when the critical behavior is due
to avalanche breakdown. In the above calculations of the sensitivity of the
critical voltage to these doping levels, though, we have only accounted for the
direct effect of charge-density changes through the Poisson equation (and, in
the case of the trap density, through the SRH generation/recombination rate.)
We have not included the possible side effects of the doping changes, such as
variations in defect densities (which could affect the carrier lifetimes) or in
scattering rates (which could affect the mobility).

We next consider the effects of changes in some of these other quantities.
For the remaining calculations in this section, the doping levels have been held

at 4 x 10! cm™3 traps and 5 x 10'® cm™3 background donors in the SI layer,
and 1 x 10'7 cm™2 donors in the contacts.
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Figure 7.4: Sensitivity of critical voltage to background SRH lifetimes. Values

of Tny = Ty are 10719, 1072, 1078, and 1077 s.

Carrier lifetimes. Because the presence of holes in the vicinity of the
cathode barrier influences the feedback mechanism for avalanche breakdown,
one would expect that decreasing the lifetimes would improve the critical volt-
age for cases in which the critical behavior is governed by avalanche break-
down. (By “lifetimes” we mean here the time constants 7y,, 7p, Which enter
our expression for SRH recombination through unintentional defects.) On the
other hand, decreasing the lifetimes also corresponds to increasing the SRH
generation rate for regions in which carriers are scarce—which increases the
hole current available for avalanche multiplication and might tend to lower the
critical voltage.

In Figure 7.4 we show the predicted effect of a 10-, 100-, or 1000-fold
decrease in both 7,, and 75, throughout the structure. Shorter lifetimes do
indeed result in slightly higher critical voltages in the avalanche breakdown
regime, so the dominant effect is that of reducing the hole population at the
cathode. The results are generally insensitive to changes in the background
carrier lifetimes, however, which is consistent with this recombination path
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representing a small fraction of the total.

Capture cross sections. In the model, if we allow SRH recombina-
tion/generation through the traps, these processes outnumber those through
the unintentional defects (for the background SRH lifetimes we have been
assuming). Since the lifetimes which describe SRH processes through unin-
tentional defects do affect the breakdown, we would expect that the capture

cross sections which describe SRH processes through the traps would affect
the breakdown as well. ‘

In Figure 7.5 we show the predicted effect of increasing or decreasing the
electron capture cross section o, by one or two orders of magnitude, while
holding 0cn/0p = 30. (As we have mentioned elsewhere, the results are in-
sensitive to the value of o, provided it is smaller than oc,.) Increasing the
capture cross section corresponds to decreasing the lifetime for SRH recombi-
nation through the traps, which keeps down the hole population at the cathode
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and thus increases the avalanche breakdown voltage.

These results suggest that reducing the carrier lifetimes in the vicinity
of the cathode would help to improve the critical voltage in the avalanche
breakdown regime.

Mobility. In connection with our discussion in Section 6.4 of the discrep-
ancy between the numerical and experimental results in the SCL regime, we
mentioned the effect on the predicted critical voltage of raising or lowering 1,
from our value of 1000 cm?/V-s. The effect of order-of-magnitude variations
is shown in Figure 7.6. Note that these lines do not cross each other at the
center; a decrease in the low-field mobility results in an improvement in the
critical voltage in both the diffusion-limited and avalanche breakdown regimes.

In the diffusion-limited regime for thinner layers, in which velocity sat-
uration is generally not an issue, a decrease in the mobility shows up as a
proportional decrease in current across the entire J-V characteristic. Given
the slope of the J-V curve in the TFL regime in the presence of diffusion from
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the contacts, shifting the J-V curve down results in a larger critical voltage
for any particular current criterion chosen.

For thicker layers, a decrease in the mobility increases the bias level at
which velocity saturation becomes important. Recall from Chapter 4 that
in the presence of velocity saturation the field profile is more nonuniform, so
that the peak field is larger for a given applied voltage. Reducing the low-field
mobility staves off this effect, and also reduces the current density for the same
carrier population, so that the probability of impact ionization is reduced.

In the intermediate thickness range, for which the critical behavior is
governed by trap filling due to injected carriers, the TFL regime of the J-V
curve is steep and its position is determined by the concentration of initially
empty traps—so changes in the low-field mobility have little effect on the
critical voltage.

7.2 Design implications

For device design, the two properties of an SI layer over which one has the
most control are the trap density N; (through the Fe concentration) and the
thickness L. The simplified theory gives a straightforward answer to the ques-
tion of how the critical voltage depends on both: provided there are enough
traps so that the critical voltage does not fall in the ohmic or SCL regime, the
critical voltage is just the trap-filled limit (3.5), and increases linearly with
N; — Ny and quadratically with L.

We have seen that the simplified theory fails to describe the experimental
results. At both ends of the thickness range, the numerical model predicts—
and experiment shows—a lower critical voltage than the simplified theory
would predict.

In the previous section, we plotted numerical predictions for V., vs. L un-
der various conditions, using log-log scales to show both sides of the thickness
range. For device design, however, thin layers with low critical voltages are
of less interest. In this section we focus on the behavior of thicker layers, for
which trap filling by injected carriers and/or avalanche breakdown dominate.
For the calculations in this section, we have used a larger contact doping than
we did in the previous section (to more closely approximate the situation in a
typical device), and a smaller background doping,.

It is instructive to examine the dependence of V. on N; and on L using
a linear scale, and to contrast the predictions of the numerical model with



102 Chapter 7. Numerical results

120
. 1 simplified
< 100-
o 80— .
2 y numerical 4
g
£ 60+ 3
FN .
&
g - /
§ J
E 20+ L =1
Q L
1 (micron)
0 - T l T | T T T
0 2 4 6 8

trap density (x 1016 cm'a)

Figure 7.7: V. vs. N, design curves for several thicknesses. Ny, = 5 x 1017
cm™3 in contacts; Ny = 1 x 10" cm™® in SI layer. Open circles indicate
transition from reversible trap filling to destructive breakdown as predicted by
numerical model.

those of the simplified theory. This we do in Figures 7.7 and 7.8. Because
the simplified theory is well known, comparing the numerical results to the
simplified trap-filled limit gives us a useful way to organize what we learn
from the numerical model.

Figure 7.7 shows the dependence of critical voltage on trap density for
several SI layer thicknesses. The thin straight lines show the trap-filled limit
of the simplified theory; the dark lines show the prediction of the numerical
model. (The construction of the numerical curves is further discussed in Ap-
pendix G.) The transition from reversible to destructive breakdown predicted
by the numerical model is indicated by the open circles. So long as the critical
voltage remains in the trap-filled-limited regime, increasing the trap density is
an effective way to improve the critical voltage. In the avalanche breakdown
regime, however, increasing the trap density is ineffective for improving the
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critical voltage. .

That the critical voltage does not increase with the square of the SI layer
thickness can also be seen clearly from Figure 7.7 and is shown explicitly in
Figure 7.8. Here the thin parabolas show the trap-filled limit of the simplified
theory and again the dark lines give the prediction of the numerical model.
The critical voltage is approximately linear with increasing thickness in the
avalanche breakdown regime, as we would expect for a field-related effect.

We can see that the quadratic-to-linear transition in V., vs. L corresponds
to a transition from trap-filled-limited to avalanche-dominated behavior. The
critical voltage follows either the trap-filled limit or the breakdown voltage,
whichever is lower. If the traps fill before the breakdown voltage is reached,
then the critical behavior is reversible and the critical voltage is roughly
quadratic in the thickness. If the breakdown voltage is reached before the
traps fill, then the critical behavior is irreversible and the critical voltage is
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Figure 7.9: Contours of constant critical voltage V., as a function of trap
density N, and thickness L. Ng = 5x 107 cm™3; Ny = 1 x 10!® cm™3.
Critical behavior is reversible trap filling except in shaded region, where critical
behavior is destructive breakdown resulting from avalanche injection.

roughly linear in the thickness.

We can summarize the predicted dependence of the critical voltage on SI
layer thickness and trap density in the contour plot of Figure 7.9, where we
show contours of constant V,, in the V;-L plane. The shaded region indicates
the regime of destructive breakdown.

(In Figure 7.10 we divide the critical voltage V., by the SI layer thickness
L to obtain an effective average critical field. That this field is not constant in
the avalanche breakdown regime is a result of the spatial nonuniformity of the
actual field distribution and of the fact that at these large biases a significant
voltage drop occurs in the anode depletion layer.)

Figure 7.9 illustrates an important implication for device design. For
high-reliability applications, a lower trap density or a thinner layer—with a
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corresponding performance reduction—may actually be preferable, so that in
case of accidental application of a high voltage the trap-filled limit is reached
before avalanche breakdown sets in. An electrostatic transient or misuse would
thus result in a temporary, reversible current increase, rather than in destruc-
tion of the device.
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Chapter 8

Conclusions and
future directions

We have developed a numerical model for steady-state current injection in
semi-insulating Fe:InP in a planar n-SI-n configuration. This model allows us
to include mechanisms that are neglected in the traditional simplified theory,
and to study the effects of these mechanisms on the progress of trap filling in

" the material and on the resulting J-V characteristics. It offers an explanation
for the destructive breakdown that we have observed.

The critical voltages and the nature of the critical beha.v10r predicted by
the model are in good agreement with experiment. The model thus provides a
basis for assessing the validity of the simplifying assumptions of the traditional
theory, for extracting information about the material, and for predicting the
performance of the material, as an aid to device and circuit design.

In this chapter we summarize the most important of the numerical results
and then go on to suggest further work based on the beginnings we have made
here.

8.1 Summary of numerical results

By comparing the predictions of the numerical model with those of the sim-
plified theory, we can judge the validity of the simplifying assumptions which
underlie the latter. The simplified theory, which was reviewed in Chapter 3,
assumes that the behavior of the material is governed by injected electrons
alone. Using the numerical model, we showed in Chapter 4 that for thin layers
or low trap densities, diffusion of electrons from n-contacts fills a significant
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portion of the traps at zero bias and thus leads to critical voltages much lower
than the simplified theory would predict. On the other hand, we showed in
Chapter 5 that for thick layers or high trap densities, avalanche injection can
cause irreversible breakdown while most of the traps remain empty, so that
again the critical voltages are much lower than those predicted by the simpli-
fied theory. Furthermore, we found that for trap densities large enough to be
useful for device work, there is essentially no intermediate thickness range over
which the simplified theory gives a good estimate of the critical voltage. For
thin layers, diffusion from the contacts dominates. As soon as the layer be-
comes thick enough to minimize the effect of the interfaces, however, it is also
thick enough that impact ionization becomes significant below the trap-filled
limit.

Comparing the predictions of the numerical model with those of the sim-
plified theory thus provides a useful way of classifying the various regimes of
operation described by the numerical model.

In Figure 8.1 we show contours of constant V./VrpL in the Ni-L plane.
That is, we plot the critical voltage predicted by the numerical model as a
fraction of the trap-filled limit from the simplified theory. In the area labeled
I, the critical voltage is lower than the simple trap-filled limit because diffusion
from the contacts is significant. Carrier generation can be neglected, and the
critical behavior is due to trap filling, but the drift-only asssumption of the
simplified theory fails. In the area labeled III, the critical voltage is lower
than the trap-filled limit because impact ionization is significant. The critical
behavior is destructive breakdown due to avalanche injection, and the no-
generation assumption of the simplified theory fails. Only in the intermediate
area labeled II does the critical voltage approach the simple trap-filled limit.
Only in this area is the simplified theory a good approximation, and only here
is the critical behavior well described as trap filling by injected electrons.

Because the critical behavior in area III is due to avalanche breakdown
rather than to trap filling, measures designed to increase the trap-filled limit
(such as increasing the trap density) are ineffective for improving the per-
formance in this regime. The improvement in breakdown voltage due to an
increase in thickness will be much smaller than would be predicted for the trap-
filled limit. Depending on load conditions and heatsinking, for high-reliability
applications it may be desirable to design for lower trap densities and/or thin-
ner layers so as to avoid the avalanche breakdown regime altogether.

In both the diffusion-limited and avalanche breakdown regimes, the nature
of the contacts is important. The I-V characteristics of an n-SI-n structure
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Figure 8.1: Ratio of critical voltage V., to simplified trap-filled limit Virgy, as
a function of trap density N; and SI layer thickness L. Ny, = 5 x 107 cm™3;
Nj =1 x 10' cm~3. Shaded region indicates avalanche breakdown.

must be seen as prdperties of the structure as a whole rather than of the SI
layer alone. '

Finally, if an n-SI-n structure is used in order to avoid double injection
in Fe:InP, one should remember that at high bias similar problems may arise
due to avalanche injection of holes. From the point of view of recombination
in the SI layer, the signature of double injection, it matters little whether the
holes are injected from a forward-biased SI-p junction, diffuse across a too-
thin n-layer in an SI-n-p anode, or are generated by impact ionization in the
high-field region of an n-SI-n structure.
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8.2 Suggestions for further work

Verification of model. In Chapter 6 we relied on room-temperature I-V
characteristics for the comparison of theory with experiment. To further verify
the model, it would help to have more direct evidence of impact ionization.
Radiative recombination would be a good indication, but our calculations in
Chapter 5 indicate that for the magnitude of the capture cross sections we
are using, only a small amount of radiative recombination will be present at
breakdown.

Manfred Pilkuhn has suggested looking for an enhancement in the noise
just below breakdown as a means of verifying the presence of impact ion-
ization. Predicting and measuring the temperature dependence of the I-V
characteristics would also be instructive.

Ideally, for comparing theory and experiment we would like to have a good
independent measure of the trap density. DLTS or simple C-V measurements
on co-doped samples offer this possibility. If a lighter than optimal co-doping
is needed in order to be able to deplete the sample, the model itself may be
of help for the resulting analysis, since we can predict the exact shape of the
depletion edges in the presence of deep levels.

(Static C-V measurements would be interesting as well. Because of charge
transfer from the anode to the cathode space-charge layer, we predict that the
static capacitance for an n-SI-n structure should approach zero at low bias.)

The velocity-field characteristics we have used in the model are question-
able. Experimental data [45] for InP show the peak velocity occurring at
slightly lower field than we have assumed. A modified v(E) curve should be
used in the next round of calculations.

Furthermore, in comparing the model with the experiments, we found that
very low electron mobility could be used to explain the results. Further work
is needed to determine if this is warranted or not. An independent measure of
the mobility would be very helpful. Lampert and Mark [1] suggest a time-of-
flight technique; John Bowers has suggested Hall measurement of a co-doped
sample. (If further calculations and/or measurements continue to point to
an extremely small low-field mobility, then work will be needed to identify
the reason for it. If on the other hand the assumption of a low mobility is
unjustified, then we continue to have a discrepancy in the shape of the I-V
curve which suggests that other mechanisms may be operating.)

Our comparison of theory and experiment has assumed that both pertain
to the same structure, namely a symmetric planar n-SI-n structure with abrupt
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junctions operating in steady state. This means that we are assuming we
can neglect geometric and surface-state effects along the edges of our mesas,
and that we are idealizing the doping profiles. Further work to examine the
validity of these assumptions is in order. We have looked at the current as
a function of the diameter of our mesas, and sometimes (although not for
the results shown in Chapter 6) see a dependence which is more nearly linear
than quadratic—suggesting a significant contribution from surface current.
Different methods of surface preparation give very different results, so for the
most reliable comparison with theory, every effort should be made to passivate
the surface. It would be good to see how the deposition of a silicon nitride
layer would affect the I-V characteristics. Gottfried Dohler has suggested the
use of guard rings to minimize surface conduction.

Since SIMS measurements indicate doping nonuniformities, we can put
nonuniform doping into the model to see how much of an effect is attributable
to this.

A variety of interesting results, involving hysteresis, polarity dependence,
and nonreproducibility, remains to be accounted for. Because of the difference
in behavior as a result of different final etches, we believe that many of these

" may be attributable to the surface.

Improvements in the model. Having convinced ourselves of the valid-
ity of the comparison, we can then explore other mechanisms that might ac-
count for any remaining discrepancy between the model and the experiments.
Impact ionization into and out of the traps is a good candidate here. Ioniza-
tion into the traps, in particular, could be expected to lower the avalanche
breakdown voltage, since it creates holes.

Since we have not discussed the mechanics of the implementation here,
we will simply state for the record that future work could profitably include
the implementation of a better user interface and of a more robust solution
technique. A systematic method for obtaining solutions on the negative-
differential-resistance branch of the J-V characteristic would also be helpful.
(A current-control version of the program has been implemented, and appears
to be more stable—in the cases for which it works—than is the voltage-control
version. However, the current-control version does not converge when empty
traps are present. It fails precisely for those situations in which one wants to
use it.) An obvious next step (obviously desirable, that is) is the implemen-
tation of a time-dependent solution. The results of the present model can be
used as bias points for a small-signal analysis.
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Use of model for characterization. Being able to predict the electrical
characteristics as a function of materials parameters offers the possibility of
using the model in conjunction with I-V measurements as a characterization
tool. The extraction of doping information from the SCL portion of the I-V
curve has been explored in the past [46, 47, 48]. This technique is based on
multiple derivatives of the I-V curve and is derived in the context of the sim-
plified theory; the present model gives us a means of evaluating its accuracy.
As with the analysis of Chapter 3, it is not possible by this method to separate
the mobility from the degeneracy.

As we mentioned in Chapter 6, in the course of our experiments we un-
covered several growth nonuniformities. Mapping trap-filled limits on a mod-
erately doped sample may prove a sensitive technique for exploring variations
in background doping.

To the extent that materials parameters can be deduced from I-V mea-
surements, the model can be an aid for process optimization. Knowing the
nature of the planar I-V characteristics also provides a basis for the identifi-
cation of other effects, such as leakage or recombination at regrown interfaces.

' Use of model for design. With a verified model, one can also explore
various schemes for improving the current-blocking capability of structures
containing Fe:InP. For.example, in a typical p-n-SI-n structure in which the
total thickness of the middle two layers is dictated by processing considera-
tions, what is the optimum division of that thickness between the n and SI
layers? The present model can be used to answer this question if the doping
levels in the various materials are known.

In Chapter 7 we have already explored the effects that would result from
increasing the trap density or the layer thickness. We also predicted that
increasing the capture cross sections and thereby reducing the carrier lifetimes
would improve the avalanche breakdown voltage. In general, the model could
be used to define the properties of an “ideal” trap for a given application, or
to predict the performance for known traps. Conversely, because it relates the
electrical performance of the material to the properties of the traps, the model
could aid in the study of those properties for new traps.

The use of Ti (which provides a deep donor hole trap in InP) as a co-dopant
with Fe has already been studied experimentally [34]. The co-doped material
was found to have excellent thermal stability, and its electrical properties are
promising. The present model could be easily extended to include this type
of center, and could thus be used to predict the electrical performance of the
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co-doped material under a variety of injection conditions.

The presence of Ti was also found to inhibit the interdiffusion of Fe with
p-dopants [34]. The possibility of a thermally stable shallow acceptor adja-
cent to an Fe-InP layer is interesting, as it could provide a way to improve
the performance of a thin SI layer in an n-SI-n structure. A sheet of fully-
ionized acceptors at each interface would reduce the bandbending in the SI
layer and thereby increase the number of initially empty traps available for
current blocking. Our calculations indicate that this would indeed improve
the performance for thin layers. The trouble with this scheme, apart from the
stability of the §-doping, is that the magnitude of the sheet charge must be
controlled very accurately.

It has recently been proposed that the addition of narrow-bandgap recom-
bination layers would help to reduce double injection in SI materials. Although
the present model does not include heterojunctions, the performance of this
type of structure could be modeled by artificially increasing the recombina-
tion rate in a particular layer. Since the presence of holes near the cathode
contributes to lower breakdown voltages in n-SI-n structures, one approach
to performance improvement (and also to further verification of the feedback
mechanism proposed here) would be to suck these holes out through a lateral
contact. This was suggested by Steve Koester, in analogy to the work of Bobby
Brar. By introducing a “sink” term in our one-dimensional model, we could
get an idea of what sort of improvement to expect from this two-dimensional
effect, if a suitable contacting scheme could be devised.

Use of model for other materials, other structures. The model can
of course be applied more generally, to the study of other materials besides
SI InP. For example, it could be used to help with the identification of the
traps in GaN, or to study the performance of low-temperature (LT) GaAs, or
to examine the effects of interface charge at fused junctions. It has already
been used to design and to predict the behavior of an APD.

To make the model a more generally useful design tool, we would want to
add the capability of handling heterojunctions, non-local effects such as tun-
neling through barriers, time dependence, energy conservation, and 2-D or 3-D
current flow. These are no longer additions to the present model, but rather
revisions of the overall organization and philosophy of the model. Several
commercial programs of this type already exist. In this context, the principal
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value of the present work is in identifying the physical phenomena that must
be included in such a model, if it is to accurately predict the performance of
structures involving SI Fe:InP.

As InP technology progresses, design problems such as back- and side-
gating, which have already been studied extensively in other materials, will
arise. We can look to previous modeling work connected with more mature
technologies—such as those of GaAs and silicon—as a guide to the develop-
ment of good models. Simple models like the ones presented here can be used
in conjunction with simple test structures to identify dominant mechanisms
for inclusion in more complex models.
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Appendix A

Constants and
materials parameters

Values of various constants used for the calculations are listed in Tables A.1-
A.3. The values shown in Table A.1 are taken from (or derived from the values
given in) Kittel and Kroemer [49]. The properties of InP shown in Table A.2
_are taken from Tiwari [50] unless otherwise noted. Derivative quantities are
calculated from the other constants as follows:

, m 3/2
Ncv)y = % (%}—T) (A.1)
fc—& = (c—&v)/2— (kT/2)In(Ny/Nc) (A.2)
ni = Ngexp[—(§c —&)/kT] (A.3)
8kT \?
Vthny = (1rm o ) (A4)

where for the thermal velocities we have used vy, =7 = (|v]).

The constants describing the velocity-field relations as used in Chapters
4 and 5 are taken from an eyeball fit to the data of Sadra et al. [36], using the
functional forms shown in Section 4.3. The calculations of Chapters 6-8 use
a smaller low-field mobility, which was inferred from fitting our experimental
data.

The impact ionization coefficients shown in Table A.2 are fits to the data
of Cook et al. [41] as given by Capasso [42] for the range 3.6-5.6 x 10° V/cm.
(Another fit to the same data is given by Wang [43].) A more accurate ap-
proach, short of treating the nonequilibrium distribution function correctly,
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Table A.1: Values of universal constants used in the calculations.

c 2.998 x 10'° cm/s
hie 1.973 x 1075 eV-cm
m,c? 0.511 MeV
q 1602 x 107 C

€, 8.854 x 1074 F/cm
kT at 300 K 0.02585 eV

would be to use a piecewise fit for these coefficients. Also note that the model
for impact ionization used here is strictly local; that is, the generation rate at
any position depends only on the field (and current density) at that position.
In reality, however, an electron acquires energy from the field over a finite
distance, so in the presence of a nonuniform field our model may overestimate -
the ionization rate.

The values used for various characteristics of Fe in InP are listed in Table

A.3. The quantity n, is derived from the ionization energy {c — &: according
to :

n, = Noexp[—(éc — &)/kT] .

There is much literature regarding the value of {c — &;. The energy levels of
the trap have been studied by a number of experimental techniques, including
thermal activation [5, 16], optical absorption [5, 15, 51], photoluminescence
[15, 51), DC photoconductivity {16, 17, 52], AC photoconductivity [17], pho-
tocapacitance [51], DLTS [32, 51], calorimetric absorption spectroscopy [20],
and FTIR absorption [18]. The reported ionization energies range from 0.59
eV [51, by DLTS] to 0.68 & 0.02 eV [5, by thermal activation].

Naive analysis of Arrhenius plots of our own temperature-dependent I-V
data gives an activation energy of 0.59-0.66 eV. However, this analysis is based
on the assumption that I o J o n, o exp[—(éc — &:)/kT] only; the temper-
ature dependence of the mobilities and that of the effective density of states,
among other possibilities, are ignored. One can show analytically that ignoring
the T%2 dependence of the density of states leads to an overestimation of the
ionization energy by an amount 3kT. That is, if n, ox (kT')*/2 exp(~A&/kT),

(A.5)
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Table A.2: Properties of InP at 300 K as used in the calculations. For meaning
of symbols, see list following table of contents.

EC—EV 1.35 eV
€/e, 12.6
me/m, 0.077
mp/m, 0.64

Tno» Tpo 10-7 s

FOR VELOCITY-FIELD RELATIONS:

Eno 1000-2000 cm?/V-s
oo 200-400 cm?2/V-s
Vsn 1x10" cm/s
Vsp 8 x 10 cm/s
E, 1.5x10* V/cm

" FOR IMPACT IONIZATION:
ag, 3.48 x 10° cm™!
oo, 2.64 x 106 cm™!
Ey, 2.76 x 106 V/cm
Ey, 240 x 106 V/em
DERIVATIVE QUANTITIES:
N, 5.36 x 1017 cm™3
N, 1.29 x 10 cm™3
o — & 0.634 eV
n; 1.20 x 107 cm™3
Vth,, 3.88 x 107 cm/s

Vgh,, 1.35 x 10" cm/s
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Table A.3: Properties of Fe in InP at 300 K as used in the calculations.

=G 059 eV
g 0.45
n, 7x 107 cm™
Oen 3x 10715 cm?
Oop 1x 107 cm?®
then d(inn,)
ainn,) _ _ 3
T = —(Ag + 3T) (A6)

For our data, taken over the range 280-380 K, including this effect in the
analysis would reduce the estimate of the activation energy by 0.04 eV to
0.55-0.62 eV. For the thermal activation energies cited in the literature, it
is often not clear whether this has been taken into account or not. In ad-
dition, even for a pure électron trap the current density depends on other
temperature-dependent quantities, such as the mobility. If the trap also acts
as a recombination center, the interpretation is further complicated by the
interaction with the valence band [40]. Therefore, we favor the spectroscopic
evidence for the position of the levels.

As mentioned in Chapter 2, the ionization energy &c — & refers to the
position of the lowest-energy state of the occupied acceptor, with respect to
the conduction-band edge. Thonke and Pressel [18] deduce the position of
this level as 802.8 & 1.2 eV above the valence band edge at 4.2 K. Scaling the
energy difference proportionally with the bandgap (for lack of a more informed
approach) converts this to ¢ — & = 0.59 eV at 300 K.

Confusion also exists with regard to the degeneracy factor g. As mentioned
in Chapter 2, several values have appeared or been implied in the literature,
but these tend to be assumptions based on shallow-acceptor behavior. The
value g = 2/5 [33] derives from an approach similar to ours, using go = 2 for
the A, ground state of the 85 (S = 5/2, L = 0) level of the 3d® (unoccupied)
configuration, and g; = 5 for the 5F ground state of the 3D (S =2, L = 2)
level of the 3d® (occupied) configuration in a tetrahedral crystal field.

The value go = 2 is consistent with electron spin resonance (ESR) mea-



119

surements, which show five unpaired d-electrons for the unoccupied acceptor
[5, 15]. (Excited states of the neutral acceptor, involving a spin-flip transition
to a 4T} state 0.5 eV above the ground state, have been reported [19]. Because
0.5 eV > kT for the temperatures of interest, we can neglect these excited
states in our occupation function. On the other hand, a splitting of 0.07 cm™1
(.009 meV) between the two 54, levels has also been reported [19, citing [15]].
This splitting is small enough to be neglected at room temperature, but would
become significant at lower temperatures—in which case the method of Ap-
pendix B should be extended to include the excited state of the unoccupied
acceptor.)

The value g; = 5 may overestimate the effective degeneracy of the occupied
acceptor, even at room temperature. Spectroscopic data have been interpreted
as showing that the five-fold degeneracy of the °F states is lifted by spin-orbit
and spin-spin interactions to give an average separation of 14 cm™! (1.7 meV)
[15] between the 3E levels. If these levels have no further degeneracy, we can
apply the results of Appendix B with g = go = g3 = g4 = g5 = 1. (The T}
excited states are separated from the ground state by 0.35 eV, and thus can be
neglected here.) Again using the data of Thonke and Pressel [18, Fig. 1}, we
find an effective degeneracy g, = 4.4 (rather than 5) for the occupied state at
300 K. Retaining go = 2 for the unoccupied state, this gives us a degeneracy
factor g = go/g1 = 0.45 at 300 K.

Several values for the electron capture cross section have appeared in the
literature: Look [16] extracted o, = 1 x 1071° cm? by fitting a model for the
photoconductivity, using o —& = 0.64 eV and g = 4 in the analysis. Bremond
et al. [32] found 3.5 £ 1.9 x 10~ cm? by DLTS; Tapster et al. found 4 x 10~
cm? [51]. Bremond et al. used g = 1 and also found an activation energy of
0.63 eV for the trap; in their formalism, this includes an activation energy for
the capture cross section, which was not determined separately.

In their modeling work [26], Asada et al. used g¢n = 3 x 10715 cm?, which
they say agrees with their own DLTS measurements and with the reported
values of Look [16], Fung et al. [17], and Bremond et al. [32]. For this work,
we have retained Asada’s value; in Chapter 7 we examine the sensitivity of
the results to changes in it. In the presence of impact ionization, changes in
the magnitude of the capture cross section can have a sizeable effect on the
critical voltage we predict.

Asada et al. commented that no clearly determined values for the hole
capture cross section had yet appeared in the literature. To our knowledge,
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this is still the case. Asada et al. chose a tentative value of g, = 1 x 10716
cm? and found that their results were insensitive to o, so long as it was much
smaller than o.,. For the models discussed here, this is true as well, and we

have retained o = 1 x 10716 cm?.
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Appendix B

Occupation function for
acceptor with excited state

In this work, we have used the usual occupation function for a single acceptor:

1
= T Gola oxp & —€O7FT]
This occupation function is derived under the assumption that the acceptor
has two states, unoccupied and occupied (by an electron). The degeneracies
of the two states are gy for the unoccupied (unpaired, neutral) state, and g;
for the occupied (paired, ionized) state. The ratio go/g; is the quantity that
we have called the degeneracy factor g.

It has been reported that the Fe?* occupied acceptor in InP exhibits ex-
cited states in the bandgap. In this section, we explore the effects of including
such states in the occupation function for the trap.

For a deep acceptor whose occupied configuration has both a ground state
and one excited state in the bandgap, there are three possible states, which we
label 0, 1, 2 as shown in Table B.1. In this notation, &, &, and &, represent
the total energy of the acceptor in its various states; &, and &;, represent the
energy of an electron in the ground state and excited state, respectively. The
ionization energies (¢ — &:,,,) are & from the ground state and &2 from
the excited state, so that &;; > &,2. Let’s define Aé;12 = &, — &,, the energy
needed to lift the occupying electron out of the ground state into the excited
state.

For our transport problem, so long as the electron is localized on the
acceptor, it does not matter whether the electron is in the ground or excited
state. In either case, the acceptor is ionized and carries a charge of —q, and the

(B.1)




122 Appendix B. Occupation function for acceptor with excited state

state 0: unoccupied Noe=0
unpaired go = 2(7)
& =&o
state 1: occupied, ground state N; =1
paired g1 =1(7)
& =6 +&,
state 2: occupied, excited state No=1
paired g2 = 1(7)
62 = 60 + §t2

Table B.1: Labeling of states for deep acceptor.

electron is unavailable for conduction.” Thus the relevant occupation function
is f~=f'4 f2= P(1) + P(2).
Taking the Gibbs sums,

I A

_ g1 exp[(ér — &)/ KT + g2 exp|(éF — &2)/KT]
go exp{—&o/kT] + g1 exp{(§r — &)/kT] + g2 exp|(&r — &2)/kT)

g1 exp((€r — &,)/kT] + g2 exp|(§F — &, — Aa12) /KT
go + 91exp[(§r — &, )/kT] + g2 exp|(&r — &, — Abar2)/KT]

= o 3 _ -1
B [1+(91"‘gﬁexp(—AEm/kT))exP[ (6r —&)/KT]| . (B2)

If A&,y2 = 0, the effect of including the “excited” state is to increase the
degeneracy of the occupied acceptor from g; to g; + go. This has the effect
of lowering the degeneracy factor from g = go/g1 to ¢’ = go/(g1 + g2), which
would be equivalent (for a given temperature) to shifting the energy level
down by an amount £T'In(g/g’) = kT In[(g1 +g2)/91) = kT In(1+g2/g1). That
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is, for a given free electron concentration (=> &ry,), there would be a larger
fraction of occupied traps if we decrease the degeneracy factor (increase the
degeneracy of the occupied state, or add an excited state). (In our problem,
this means decreasing 8 ~ gn,/N;, which implies less current flow at a given
injection level.) In the limit A& — oo, the occupation function returns to
the single-level expression, as if the excited state were not there.

In the general case, including an excited state for the occupied acceptor
with degeneracy g, and energy A&,;2 above the ground state is equivalent (for
a given temperature) to reducing the degeneracy factor by

9 _, 90

B.3
g1 91+ gaexp(—A&ue/kT) (B:3)

or lowering the energy of the single-level acceptor by
Ea =€ —kThn[1+ (gg/gll) exp(—A&q12/kT)] . (B.4)

The reduction in the degeneracy factor is temperature-dependent. If kT
is small compared to A&, the degeneracy factor remains near the single-
- level value. On the other hand, if kT is large compared to Aéfa 2, then the
degeneracy factor approaches go/(g1 + g2). (For the transport problem, recall
that the current density in the ohmic and SCL regimes is proportional to g.
Other things being equal, therefore, the decrease in the degeneracy factor with
increasing temperature would lead to a decrease in current density. But the
current density is also proportional to n,, which increases with temperature.
The temperature dependence through n, is stronger than that through g, so
for the overall problem the temperature dependence of g is more than offset
by that of n,.)

For an acceptor whose occupied configuration exhibits M excited states
labeled ¢ = 2, 3, ..., M+1, each with degeneracy g; and separated from the
ground state by an energy A&,;, the degeneracy factor becomes

g
9= M+l : ' (B.5)

91+ Y giexp(—ALayi/kT)
=2

In Appendix A we applied this result to the case of Fe in InP.
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Appendix B. Occupation function for acceptor with excited state
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Appendix C

Parametric solution to the
simplified problem

As noted in Chapter 3, the set of equations (3.9-3.12) describing the simpli-
fied problem for a single acceptor electron trap can be solved analytically for
V(J,E) and z(J, E) [1]. Substituting (3.11) and (3.10) into (3.9) gives

R % - [(#E - ") " (1 +gnf<V;uE/J> "")] =FE). (G

The thermal carrier concentrations n, and n,, are constant, and are related by
ng = Ny/(1 4 gn,/n,). As shown in Section 3.2, (C.1) is integrated to yield

V(J,E) = f F-\(J,E)EdE (C.2)
2(J,E) = / F-\(J,E)dE . (C.3)
Lampert and Mark define the dimensionless variables

u = #-E(m) (C.4)

3,3,2

_ g°ndp
v = e.;2 -V{z) (C.5)

2,2

w = L0k . (C.6)

eJ
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Letting Eo = J/qn,u, the dimensionless field v = E(z)/Ep = n,/n(z) is the
ratio of the actual local field E(z) to that which would be present if the current
were carried entirely by thermal free electrons. This quantity is the parameter
for the solution.

In the dimensionless variables, (C.1) can be written as

du (1 —u)(l+Gu)
dw  u(l+Cu)

(C.7)

where, again using Lampert and Mark’s definitions,

G = C+D
D = BC/(1+C)
C = gn,/n,
B = Ny/n,.

(For consistency with the rest of this document, we use here the symbol », for
" the quantity that Lampert and Mark call N, and we use the symbol g for the
quantity that Lampert and Mark would call 1/g. Note, however, that B, C,
D, G, R, and v as defined in this appendix have no relation to the quantities
designated by those symbols elsewhere in this work.)

The parametric solution (C.2-C.3) is [1, Equations 4.113-4.114]

. C 4 S S
v o= —pou (R+a)u Rin(l-u)+ = In(1+Gu) (C8)
C S
w = —-au—Rln(l—u)——dln(1+Gu) (C.9
where ‘
_ C+1
R = G+1
S = D

T GG+



127

Appendix D

Formulation of the
numerical problem

The equations describing the numerical model were given in Section 4.1, with
forms of additional terms given in Sections 4.2-4.4 and in Chapter 5 and in
Appendix E. We have implemented a finite-difference solution, of which an
. overview is provided here. Greater detail can be found in the books by Kurata
[24] and Selberherr [25].

Discretization of equations and formulation of matrix problem.
A solution consists of three functions, ¥(z), n(z), and p(z), that describe the
spatial variation of the potential and of the carrier concentrations across the
structure, and simultaneously satisfy the Poisson and continuity equations for
all points in the structure. The technique in general is to assume that these
have the forms o(z) + 69(z), no(z) + 6n(z), and po(z) + 6p(z) where o, no,
and po are known, and then to locate zeroes of ¢, 6n, and 5p as functions of
1, n, and p. (I hope these symbols are not confusing; no(z) here has nothing
to do with the thermal concentration n, used elsewhere in this document—
except that in starting from an equilibrium solution at zero bias we may use
n, as our guess for ng when stepping up to the first non-zero bias point.) The
solution is carried out by Newton’s method, using analytic differentiation.

In the numerical version, the variables 9[i], n[i], and pi] are defined on a
mesh of M+1 “main” division points (let’s label them i = 1,2,3 ... M +1) that
divides the structure into M cells. Derivatives of these variables are defined
on a set of “auxiliary” points lying between the main points, at the centers of
the cells. (Let’s label these so that auxiliary point i lies between main division
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points ¢ and i + 1.) Most of the derivatives are formed in the obvious way,
taking differences between values at the edges of a cell and dividing by the
width of the cell.

We thus have a set of 3(M + 1) simultaneous equations: one Poisson and
two continuity equations for each mesh point, plus the boundary conditions
at the end points. The equations for the interior points (2 < i < M) can be
written in matrix form as follows:

Alilyli — 1] + Blilbyla] + Cliléyli + 1] = F[i] . (D.1)

Here A[i], Bli], and C[i] are 3 x 3 matrices, and y[i], 6y[i], and F[i] are 3 x 1
vectors. The elements of 6y[i] are 8p[i], 6n[i], 64[i], and each of the rows of
Ali], Bli], C[i], and F[i] corresponds to one of the original three equations. In
our implementation, row 1 is the hole continuity equation, row 2 is electron
continuity, and row 3 is Poisson. Thus the element A;,[i] is the coefficient
of énfi — 1] in the hole continuity equation for mesh point i, Bj[i] is the
coefficient of 6pli] in the Poisson equation for mesh point i, and so on. These
elements together form a 3(M — 1) x 3(i/ — 1) block-tridiagonal matrix that
can be inverted by standard algorithms, provided there are no singularities
(see below). '

The matrix elements are derived from the original equations by Taylor
expansion to first order, substitution of discretized derivatives, and straight-
forward algebraic manipulation—with the following exception:

Scharfetter-Gummel integral forms for drift-diffusion equations.
The drift-diffusion equations (4.4-4.5) relate the current densities to deriva-
tives of the carrier concentrations and of the electrostatic potential. For the
numerical problem, we need to relate each of the current densities at some aux-
iliary mesh point to the corresponding carrier concentration, and electrostatic
potential, at the two adjacent main mesh points. The method of Scharfetter
and Gummel [35] is an alternative to the “obvious” way of doing this, so as
to avoid matrix singularities that would otherwise arise if the difference in
potential between adjacent mesh points exceeds 2kT/q. (Kurata [24] gives a
good discussion of the problem; here we simply state the two methods and
give the expressions to which they lead. For consistency with Kurata, we use
as the example the equation for holes.)

For both the “obvious” method and the Scharfetter-Gummel method, the
discretized hole current equation can be written as

Jpli] = Ap,[d] - P[i] + Ap,la] - pli + 1] (D.2)
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where Ay, [i] and A, [i] depend on B[i] = (¢/kT)(¥[i] — ¥[i + 1]). Using the
“obvious” approach, we simply express dp/8z and 8v/0z in difference form
and plug those into (4.5). For the hole concentration in the drift term, we
define the value of p at auxiliary point i by linear interpolation between the
values at main points ¢ and 7 + 1. After some manipulation, we find from this
“obvious” approach

Mulll = (KT/q)up[il(B[i1/2 + 1) (D.3)

Mooi] = (RT/q)upli)(BL1/2 - 1) . (D4)

In the method of Scharfetter and Gummel, instead of taking differences
immediately, we first use the drift-diffusion equation (4.5) to relate p[i + 1] to
pli). This is done by assuming that J,, pp, and E = —8%/dz are constant

across the width of cell 4, then treating (4.5) as a differential equation for p
and integrating to yield

p[i + 1) = p[i]exp(¢Ez/kT) + q;ﬁE(l — exp(qEz/kT)) . (D.5)

Only after this do we discretize E = —8+)/8z, and rearrange to obtain
Ali)

Mnli] = KT aslilT— g (D.6)
Apa[i] = (kT/Q)up[ill—_% - (D.7)

In the limit of small B[i]—that is, slow variation of the potential—these forms
reduce to (D.3-D.4). Unlike (D.3-D.4), however, the integral forms can be--
used with more rapidly varying potentials. Use of the Scharfetter-Gummel
expressions (D.6-D.7) therefore promotes computational efficiency by allowing
the use of a sparser mesh than would be required with the simple difference
forms (D.3-D.4).

For electrons, we have

Jalt] = Ansli] - nli] + Mny[i] - i +1] (D.8)
Bli]

Amfi] = (kT/Q)#n[i]m(—ﬁ—['i]—) (D.9)
Ml = T/l (D.10)

where, as before, [i] = (¢/kT)(¥[i] — ¥[i + 1]).
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Appendix D. Formulation of the numerical problem



131

Appendix E

Poole-Frenkel barrier-lowering
for field emission

In Section 4.4 I showed the results of including field-enhanced emission from
the traps, based on Poole-Frenkel barrier-lowering. This barrier-lowering was
illustrated in Figure 4.10 for a one-dimensional Coulomb potential. For that
case, the potential energy for an electron in the presence of a uniform electric
field of magnitude FE oriented along the —z direction can be written as

2
§in(2) = Efglzl —qEz. (E.1)

Here we have simply added the potential due to the applied field to that due
to a positive point charge. (We have written 2z here rather than z, because we
will want to use spherical coordinates below. The field would of course still be
parallel to the direction of current flow, which was designated as z in the rest
of this document.) The potential energy has a local maximum at z = Zmaz:

[ g\
#maz = (47reE) ! (E-2)
whence E\1/2
Ao (E) = ~in(me) = - (L) . (E3)

Assuming that all of the emission occurs in the positive z direction results in
an enhancement of the emission probability e, by a factor exp[A&, , (E)/ kT).
Martin et al. [39] attribute this result to Frenkel and point out that it overes-
timates the field effect.
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The one-dimensional Coulomb potential is a special case of the three-
dimensional potential described by

2

&p(r) = Z:-rge_; —gErcosé, (E.4)
where r and 6 are the usual spherical coordinates such that rcos@ = 2. The
radial position of the barrier and the change in the barrier height are now
functions of 8, with F cos@ replacing F in the expressions above. For the
evaluation of the emission enhancement in this case, I relied on the work of
Martin et al., whose result [39, Equation 7] I have not checked. They assume
that for the hemisphere in which the barrier is not lowered (as for 2 < 0 in
Figure 4.10) the emission probability remains unchanged with respect to the
zero-field case, and find that the overall emission probability is enhanced by a

factor ) 1

ena ]

— = — -1 - .
s Sler-D+ 1+, (€5)
where e,3 is the overall emission probability in the presence of the field, e, is

the overall emission probability in the absence of the field, and
v = (qE/me)"/2%q/kT. (E.6)

In Section 4.4 I also showed what would happen if we assumed a three-
dimensional square-well potential of radius ro = 50 A. Here again I relied on
the result shown by Martin et al. [39, Equation 9):

e _ Loy,
oo 2 e’"—1)+ 5 (E.7)
where
v = qEry/kT. (E.8)

(Martin et al. use F to denote the field, and ¢,¢p to denote the permittivity.
Their paper is about field emission from non-Coulombic traps; the results I
have quoted are taken from their introductory overview.)

+

Our formulation (4.14) is equivalent to

— = exp[A&,(B)/kT), (E.9)
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which means that, for the three-dimensional Coulomb and square-well poten-
tials, the change in ionization energy A€,(E) that enters (4.14) is an average
obtained by equating (E.9) with (E.5) or (E.7) respectively. For the one-
dimensional Coulomb potential, A&,(E) in (4.14) is just A&, (E) from (E.3)
above. .

In Section 4.4 we saw the effect on the distribution of filled traps and on
the J-V characteristics of assuming in turn each of these three forms for the
potential due to the trap. In the presence of velocity saturation in the SCL
regime, none of the three gives particularly good agreement with experiment
for the shape of the J-V curve in that regime. Because of the redistribution of
space charge as discussed in Section 4.4, all three forms would result in higher
critical voltages than would be expected in the absence of field emission. (This
effect is illustrated in Figure 6.1.) Of the forms considered, the 3-D Coulomb
potential is in principle the most likely to correspond to the actual physics,
but the assumption that it does is still fairly arbitrary. For these reasons,
and because the convergence of the model is much worse with field emission
than without it, and because we can achieve approximately the same effect
on the critical voltage by simply assuming a linear velocity-field relationship,
‘field emission was not included in the calculations for Figure 6.3 or in those
for Chapters 7 and 8.
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Appendix E. Poole-Frenkel barrier-lowering for field emission
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Appendix F

Carrier concentrations in a
reverse-biased p-n junction

Textbooks typically plot the carrier concentrations in a reverse-biased p-n
junction under the assumption that no generation or recombination occurs
inside the depletion region. Such generation does occur, of course, and can

lead to a substantial dark current. In this appendix we calculate the steady-

state carrier concentration profiles for a reverse-biased junction in the presence
of Shockley-Read-Hall carrier generation. The profiles exhibit plateaus which
can be explained with a simple current-continuity argument. This analysis of
the p-n junction also sheds light on the n-SI-n problem.

Carrier concentration profiles for a symmetric p-n junction operating at
10 V reverse bias are shown in Figure F.1. Here we have taken N, = Ny =
5 x 10'® cm™2 and 7,, = 7, = 1 x 1079 s, and assumed constant electron and
hole mobilities of 2000 and 400 cm?/V-s respectively. For comparison, we also
show the concentrations as they would be in the absence of carrier generation.

In the presence of SRH generation, plateaus appear in the carrier con-
centration profiles. The presence of these plateaus makes sense if we consider
that, in steady state, any carriers generated inside the depletion region must
be removed by a drift current. If the carrier concentrations are held at very
low values, then np <« n? and the generation rate is large; at the same time,
since the carriers are scarce, only a small drift current can flow. Thus, if we
started from a condition of no generation and then turned on the generation
mechanism, carriers would accumulate in the depletion region until the popu-
lations were large enough to hold down the net generation rate to a value that
could be balanced by the drift current.
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Figure F.1: Carrier concentrations in a reverse-biased p-n junction, with and
without SRH generation.

Since the carrier concentrations in the depletion region are small compared
to the intrinsic concentration, we have
np — n? n;

R = R — F.1
® Tp(m+ng) + (P + 1) 27 (F.1)

if 7y = T, = 7. Thus the steady-state electron and hole current densities vary
linearly across the depletion region, since (taking the electrons as the example)

%%_‘:]c'l =R-G=R,= —g—;_ = constant. (F.2)

For a symmetric junction of total depletion width W, in the plane of the
junction we will have

W n
Jn = _q— M 'Tl' = qnunEmaz (F-3)
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where we have neglected diffusion current on the grounds that the carrier

concentrations are small. E,,,. is the field in the junction plane,

gN,W
2 '’

Emaa: = -

so that the electron concentration in the junction plane is
n = € ng
qNopn 21

(F.4)

(F.5)

or 4.2 x 10® cm™3 for the case corresponding to Figure F.1. The numerical

calculation yields 5.8 x 10% cm™3.
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Appendix G

Construction of design curves

In Chapters 7 and 8 are plots showing the critical voltage calculated in the
numerical model, as a function of various parameters. This appendix shows in
a bit more detail how those plots were constructed, and, we hope, addresses
any confusion that might arise about what they mean. We use as examples
one curve each from Figures 7.7 and 7.8.

The plots shown here will also give the reader an indication of the sensi-
tivity of the design curves to the definition of the critical voltage. (Recall that
in this work we have defined it as the voltage for which J =1 A/cm?.)

Each curve in Figures 7.1-7.8 represents a family of J-V characteristics.
For example, the L = 2 um curve of Figure 7.7 condenses information from
the family of J-V characteristics shown in Figure G.1. The curves in Figure
G.1 differ from each other only in the trap density N, used for the SI layer.
For each trap density, the J-V curve is traced out by successively increasing
the voltage, starting from a zero-bias solution of the Poisson equation. The
critical voltage for each curve is the voltage at which it crosses the 1 A/cm?
line, determined as follows:

For the lower trap densities (0.5 and 1 x 10'® cm=3 in Figure G.1), the
trap-filled limit is encountered before avalanche breakdown can occur, and the
calculation would trace out a smooth J-V characteristic through and beyond
the steep section of the curve. This is a what we call reversible trap filling.
For the construction of design curves, we stop the calculation as soon as the
current density exceeds 1 A/cm?, and use an external filter to determine the
voltage at 1 A/cm? by linear interpolation.

For the higher trap densities (2.5 x 10!® cm~3 and above in Figure G.1),
a larger voltage is required to fill the traps, and avalanche breakdown occurs
before the trap-filled limit is reached. In these cases the full J-V characteristics
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Figure G.1: Numerical J-V characteristics for L = 2 um, for trap densities
from 0.5 to 5.0 x10'® cm™2 in increments of 0.5 x10'¢ cm™3.

would exhibit the multiple-valued behavior shown in Figure 5.8. For Figure
G.1 and for the construction of design curves, we have stopped the calculation
at the turning point, and used the voltage at the turning point as the crit-
ical voltage—corresponding to what would be observed in voltage-controlled
operation with a low-impedance source. This is indicated in Figure G.1 by
curves that end below 1 A/cm?, and constitutes a prediction of destructive
breakdown.

For intermediate trap densities (1.5 and 2 x 10'® cm~3 in Figure G.1), we
have a phenomenon that I call avalanche-assisted trap filling. Here the steep
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portion of the curve is a result of trap filling at the anode side of the layer
due to increased electron injection from a lowered barrier on the cathode side.
That is, impact ionization produces holes which accumulate at the cathode side
of the layer and thereby allow more electron injection—and thus more trap
filling—for the same bias. Avalanche breakdown can still be reached at the
top of the trap-filled regime, as illustrated by the N, = 2.0 x 106 cm~3 curve
in Figure G.1. In these cases, stable operating points can (at least in principle)
exist on a very steep section of the curve just below avalanche breakdown; here
the prediction of reversible vs. destructive behavior is sensitive to the criterion
chosen for the critical voltage.

For N, = 1.5 x 10'® cm™3 or less (still for our 2-um example), we predict
reversible behavior up to 1 A/cm?, while for N; = 2 x 10'® cm™3 or more we
predict destructive breakdown. The open circle on the 2-ym curve in Figure
7.7 is drawn between these two values of N, to indicate the transition from
one type of behavior to the other. (In order to locate the transition more
precisely, Figure 7.7 actually contains data points from more J-V curves than
are shown in Figure G.1.)

- All of the curves shown in Figures 7.1-7.8 were constructed in this way.
As another example, we show in Figure G.2 the family of J-V characteristics
whose critical voltages are summarized by the N, = 1 x 10'® cm™3 curve of
Figure 7.8. Note that we again have a regime of avalanche-assisted trap filling
for intermediate thicknesses. In this case, for L = 3 um or smaller we predict
reversible behavior up to 1 A/cm?, while for L = 3.5 um or larger we predict
destructive breakdown. Again, the open circle on the N; = 1 x 10'® cm~3 curve
of Figure 7.8 is drawn between these two values of L, to indicate the transition
from one type of behavior to the other. One could of course also think of these
transitions in terms of the critical voltages to which they correspond.
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Figure G.2: Numerical J-V characteristics for N; = 1 x 106 cm™3, for thick-
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