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Abstract 

Microcavity Lasers: Coherent Matter and Light 

by 

Rajeev Jagga Ram 

It has recentJy become possible to engineer the optical environment of charge 
carriers in semiconductors thereby strongly altering their interaction with light. This 

control may allow us to drastically improve the performance of semiconductor lasers. 
This dissertation reexamines the dynamics of semiconductor lasers in light of this new 
found control. 

Spontaneous light emission seeds the laser oscillator and at the same time bleeds 
potentially useful energy into nonlasing optical modes. It is the interplay of these two 
processes that is responsible for the abrupt change in received power from a laser 

diode below and above thershold. Below threshold light is radiated in all directions 
and in many colors; only a fraction of this light is captured by a detector. At threshold 

the photon number builds up so that stimulated light emission becomes the dominant 
process. The spontaneous emission coupling factor is a measure of this dual role 

played by spontaneous emission processes; it is equal to the fraction of total 
spontaneous emission that is radiated into the lasing mode. A simple model is 

developed to calculate the spontaneous emission factor. The ultimate and expected 

performance for semiconductor lasers which have nearly all spontaneous emission 

emitted into the lasing mode is discussed. 

When the coupling between the optical field and the electronic system is very 

large the spontaneous emission process becomes reversible. In semiconductors this 
occurs when quantum well excitons are placed within a high-finesse microcavity 
resonator. This system of coupled excitons and photons cannot exhibit electronic 
inversion or optical gain. Despite the absence of optical gain it is possible for this 
device to emit coherent light so long as a coherent matter state is developed first. A 
model for such a matter laser is developed. Finally, low-temperature optical 
spectroscopy is used to determine the viability of such coherent matter lasers. 
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Chapter 1 
INTRODUCTION 

1.1 Single Mode Lasers 

Cable television distribution, and long-distance telephony both rely on the 

directionality, spectral purity, and intensity of laser light. These applications rely 

on the build-up of a large number of identical photons in a single optical mode. A 

laser employs stimulated light emission to 'place' photons in a single mode. 

Before the onset of stimulated emission (when there are not enough photons 

nearby), conventional semiconductor devices emit light into many cavity modes. 

Light from these modes travels in many directions and has a broad frequency 

spectrum. As more electrons are excited in the semiconductor, the number of 

emitted photons in the various modes increases. The mode which has the 

strongest electronic transition and has the smallest optical loss is best at 

maintaining a large photon number. Furthermore, the emission rate into this 

mode increases due to stimulated emission. Eventually the photon number in the 

single mode is so large and the stimulated emission rate so fast that nearly all of 

the excited electrons relax by emitting identical photons into one mode. The 

onset of strong stimulated emission is coincident with the increase in 

directionality and reduction in spectrum associated with single mode emission. 
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Stimulated emission in a laser is not the only way to obtain light in a single 

mode. The number of optical modes into which excited electrons can emit light is 

determined by the geometry of the optical cavity and the energy distribution of 

the excited electrons. In semiconductors, excited electrons are distributed over a 

range of kinetic energy. The different kinetic energy states correspond to 

different transition energies; the electron distribution broadens as the temperature 

and electron density increase. These electrons only emit light if there is an optical 

mode that is resonant with the electronic transition - if there is a place for the 

photons to go. The frequency of the optical modes is detertTlined by the size of 

the optical cavity. Large cavities have many closely spaced modes whereas a 

very small cavity may support only a single mode. Figure I .  I shows the 

transition spectra and optical modes for various cavity sizes and electron 

distributions. Figure I .  I a shows the mode spacing and transition spectrum for a 

conventional semiconductor laser. Figure I .  I b and I .  I c both exhibit single mode 

emission even without stimulated emission. Figure I .  I b has a broad emission 

spectrum corresponding to emission from free electrons. Figure l . I c  has a narrow 

emission spectrum characteristic of excitonic emission. These three structures 

have profoundly different properties. In this section, we describe the 

conventional semiconductor laser. In Section 1 .2 ,  we wil l  introduce 

semiconductor microcavity lasers. Section 1 .3 introduces the polaritons that are 

formed when excitons couple to a single cavity mode. 
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Fig, 1 . 1  The optical mode distribution and transition spectra for various cavity sizes and electron 
distributions. 

A conventional semiconductor laser structure is shown in Fig.l.2 (Zhao, 

1 994). The optical cavity is defined by two end mirrors and a waveguide which 

confines the light as the photons bounce between the mirrors. The cavity length 

for this laser is 300J.l.Ill. The longitudinal mode spacing is IA. The waveguide is 
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5J.U11 wide and If.lm deep. The transverse optical modes are spaced by 10 A. The 

excited electrons in this structure are confined to a thin InGaAs quantum well 

layer that is inside the optical cavity. Typica))y, the electrons in the InGaAs 

quantum weIJ can participate in optical transitions from 950 nm to 990 nm. There 

are 106 optical modes that are accessible to the excited electrons. These include 

the bound states of the waveguide as we)) as the radiation modes. A small 

detector is used to collect the light that leaks out of the optical cavity. Figure 1.3 

shows the light power versus the injected current at 17K; the injected current is 

responsible for exciting the electrons. The collection efficiency is sma)) when the 

electrons are relaxing into all 106 modes since these photons travel in many 

different directions once they leave the laser structure and only a few reach the 

detector. In practice, the change in the measured efficiency is also affected by 

nonradiative emission processes in which the excited electrons give their energy 

to the crystal lattice (phonon emission) or to other electrons (Auger), but since we 

are looking at a low-temperature strained quantum well laser we can ignore these 

nonradiative effects. The onset of stimulated emission increases the collection 

efficiency as nearly all of the radiated photons are leaking out of a single cavity 

mode and therefore travel in the same direction. The abrupt change in the 

measured efficiency that occurs when we go from multimode to single mode 

emission defines the laser threshold. 
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Dielectric 

Contact 

Fig. 1 .2. A conventional buried-heterostructure edge-emitting laser structure. 

, 

10���� __ �� __ � ______ ������ 
10-5 10-1 

Current (rnA) 

Fig. 1 .3. The optical power versus injected current for a conventional buried-heterostructure edge 
emitting l aser operating at 77 K. The figure is based on (Coldren. 1995). 
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1.2 Microcavity Lasers 

Once the optical cavity becomes sufficiently small, only one optical mode is 

within the emission bandwidth. Figure 1.4 shows the structure that we study in 

Chapter 3 (Ram, 1 996). The optical cavity is defined by two high reflectivity 

mirrors constructed from multiple GaAs/ AlGaAs layers. The cavity length is 0.3 

J.lm or one optical wavelength at the emission wavelength of 0.98J.lm for a cavity 

which has a refractive index of 3.5. The excited electrons are confined to three 

InGaAs quantum wells in the center of the optical cavity. The longitudinal mode 

spacing for this short cavity is 90 nm. In this particular structure, the transverse 

dimension is still large, but the short cavity and transverse waveguide size have 

effectively limited the number of modes to only 1 00. The measured light versus 

injection current is shown in Figure 1 .5 .  The discontinuity at threshold is 

observed to be smaller than in the conventional semiconductor laser (Fig. 1 .3) .  

As the number of optical modes decreases, the collection efficiency at the detector 

becomes larger. Figure 1 .6 shows the optical power versus injected current for 

various numbers of optical modes within the emission spectrum. For a single 

mode optical cavity, the collection efficiency is the same before and after the 

onset of stimulated emission. The change in slope efficiency which is the 

hallmark of laser action, as it commonly defines laser threshold (DiGiorgio, 1 970 

and Rice, 1 994), does not exist in single mode lasers. The absence of a threshold 

in a single mode laser is accompanied by a profound change in the electronic 

interaction with light. 
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Fig. 1 .4 A typical etched-post microcavilY laser. 
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Fig. 1.5 The optical power in the lasing mode versus the injected current for a 9-J.Lm diameter 
microcavity laser at a heat-sink temperature of 1 26 K. 
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Fig. 1.6 The optical power in the lasing mode versus current for lasers with JO�. let. 102 and I 
optical mode. The efficiency changes more drastically as the number of accessible modes 
becomes larger. 

The elimination of absorption is a vivid example of this change. In 

conventional l aser media an incident light beam is absorbed by low energy 

electrons. The power in the transmitted light beam is observed to decrease as a 

result of this absorption. This reduction in the incident power occurs because 

electrons are excited by the light and eventually dissipate this energy by heating 

the semiconductor or emitting light into other optical modes. In the absence of 

nonradiative relaxation processes (Le. no lattice heating), absorption is simply a 

redistribution of energy out of the incident mode into other optical modes 

(Loudon, 1 992); this redistribution is mediated by the electrons. A single mode 
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optical cavity has no other modes into which the electrons can scatter the incident 

light. All of the incident photons, therefore, eventually leave the cavity in the 

same mode that they entered (again only in the absence of nonradiative 

relaxation). In steady state, there is no reduction of the incident optical power -

no measured absorption. This occurs regardless of the number of excited carriers, 

i.e. without population inversion. 

There is a significant reduction of the threshold current shown in Figure 1 .6 as 

the number of accessible modes decreases (Bjork, 1 99 1 ) . Emission into cavity 

modes that do not eventually lase is an energy loss process for the excited 

electrons. This electron loss process requires more pumping in order to build-up a 

large photon number in the one mode that will lase. In this way, the reduction of 

cavity size has the same benefits as reducing the nonradiative relaxation rates; 

both processes improve the efficiency of the laser. However, if these nonradiative 

processes are very fast, reducing the cavity dimension will not have a significant 

effect on overall efficiency. 

In Chapter 3, we develop a simple formalism for analyzing the optical mode 

distribution in microcavity semiconductor lasers. A rate equation model which 

shows a simple method for treating the mode counting problem is developed. 

Measurements of light versus current on the microcavity structure described 

above are used to estimate the number of optical modes that the electrons can 

access. We conclude this chapter with a discussion of nonideal effects such as 

nonradiative recombination, leakage currents, and optical scattering losses. 
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1.3 Polariton Lasers 

In the microcavity laser, energy is transferred from excited electrons to a 

single optical mode. However, the excited electrons are more strongly coupled to 

other electrons with different momenta than to the optical mode - momentum 

scattering times are typically I ps (Wang, 1995) and spontaneous emission times 

are 5 ns in GaAs. The strong scattering between electrons means that the electron 

loses phase information about the photons that have previously been radiated. 

This scattering prevents a coherent exchange of energy back and forth between 

the excited electron and the cavity mode. Electrons and holes bound together in 

an exciton recombine much faster than free electrons and holes. For example in 

GaAs quantum wells, the exciton spontaneous emission rate is 20-40 ps 

(Andreani, 1 99 1 ) . This strong coupling between exciton and photon is 

measurable as an enhanced absorption. The photons in the microcavity are 

reabsorbed before the excitons lose their phase memory and before the photon 

leaks out of the cavity. This allows a coherent exchange of energy between the 

excitons and the cavity mode. This system of coupled excitons and photons i s  

called a polariton (Weisbuch, 1992). 

In the strong coupling microcavity, the cavity photon exists only as part of a 

polariton. Laser action requires the build-up of photon populations by stimulated 

emission of polaritons (Imamoglu, 1 996). Since these polaritons are also part 

exciton they have a nonzero rest mass. The collection of a large number of 

massive particles in a single quantum state is analogous to the Bose-Einstein 

condensation. In Chapter 4, we present a semiclassical analysis of these matter 

lasers. We conclude with a discussion of laser action in  a microcavity that 
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exhibits strong coupling. The rnicrocavity structure used to study the high-density 

dynamics of polaritons is shown in Fig. 1 .7. The structure is similar to the 

microcavity laser structure in Chapter 3 and Fig.4. Both the matter laser and 

rnicrocavity laser are realized in very similar structures. Determining whether the 

device is a matter laser or an optical laser is the experimenter's dilemma. 

DBA 
( 15  x Alo." Gao.agAs/AlAs) 

aw ( 150 A GaAs) 

DBA 
(20.5 x Alo." Gao.agAs/AIAs) 

Fig. 1 .7 An SEM micrograph of a microcavity sample with a one wavelength optical resonator 
and high reflectivity distributed Bragg reflectors. The quantum well and cavity are designed for 
optimal exciton-photon coupling at 10 K. 



Chapter 2 
CONTROLLING SPONTANEOUS EMISSION 

IN SEMICONDUCTORS 

2.1 Spontaneous Light Emission 

13 

The spectroscopy of atomic radiation was essential to the development of 

quantum theory early in this century. Discrete lines in spontaneous emission 

spectra suggested an atom with discrete electronic states. The early models of 

electrons undergoing classical orbits around nuclei could not be reconciled with 

such spectra. Classical ly, the atom should radiate a continuous frequency 

spectrum as the electron spirals into the nucleus. Discretizing electronic energy 

levels and treating the bound electron as a 'stationary', but distributed charge 

density reconciled the observed data with the classical theory of radiation. 

Before the formulation of the modern theory of radiation, with its attendant 

notion of the quantum vacuum, the spontaneous emission rate could be calculated 

by a judicious application of classical radiation theory to the quantum mechanical 

charge distribution. In the following chapter we treat spontaneous emission as 

classical radiation from an oscillating charge density. Following the treatment of 

French and Taylor (French, 1978), the quantum theory is employed only to 
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calculate the dipole moment as the electron undergoes a transition between 

quantum states. This approach is then extended to spontaneous emission inside 

microscopic semiconductor resonators. Surprisingly, this semiclassical approach 

is able to predict not only the spontaneous emission rates in microscopic 

resonators, but also nonperturbative effects such as polariton formation (Haroche, 

1 992). Accurate prediction of the modified spontaneous emission rate in these 

semiconductor resonators requires careful modeling of the multilayer mirrors that 

are employed. A simple approximate theory is developed to simulate OUT 

microwave and optical experiments. 

Semiclassical theory of spontaneous emission 

Light originates from the acceleration of electric charges. Classically. the 

electric charge is taken to be a point particle. Quantum theory treats the electron 

as a spatially spread charge density that is described by the wavefunction of the 

electron. The charge density is stationary in a state, ",(E). of definite energy E; 
and is described by a dipole moment D=-qf r",·",dV. If, instead, the electron 

is in a superposition of two states with definite energy, 
-iE,tlh -iE/tlh '" = "'Ie + '" ,e , 

the resulting charge density is not stationary 

D = -qf r[",;""eiCII + "'i",;e-'IlW ] dV; 

(2.1) 

(2.2) 

it oscillates at a frequency co such that co = ( Ej - Ef ) In. This oscillating charge 

distribution loses energy through light generation and the electron eventuall y  

relaxes into the low energy state. We can apply the classical theory of  radiation to 

this oscillating charge density and calculate spontaneous emission rates and 
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radiation patterns. Figure 2. 1 shows an example for atomic hydrogen 1 s 2p 

transition as the electronic charge oscillates from one side of the atom to the 

other. 

Fig. 2. 1 The instantaneous electronic charge distribution for a hydrogen atom undergoing a 2p to 
Is transition. 

A useful metaphor for this situation is a damped mechanical oscillator. The 

equation of motion for the charge displacement, a, is 

(2.3) 

where /D/ = qa. The damping constant (r) is the rate that energy is lost by the 

oscillating charge as radiated light. If we assume that the rate of energy loss is 

much slower than the oscillation frequency - r-I is typically 1 ns and the 
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oscillation period for visible light is approximately 1 fs - we can readily calculate 

the instantaneous power radiated by the electron. Treating this oscillating charge 

as a source current (J = D) in Maxwell's equations we can calculate the radiated 

electric and magnetic fields. An integration of the total energy carried away by 

electromagnetic fields yields the total radiated power (Haroche, 1992) 
q2a2(J/ p -�-..,.. -
121rEoc3 • 

The rate of spontaneous emission is 
" 3 32 ' , P q-a-w 1 81l' q a- a- .I 

r = fz(J) = 121l'E"fzc3 = 41l'Eo � A? = 5.57 iI.? ns 

(2.4) 

(2.5) 

This expression could also be found quantum mechanically by employing Fermi's 

golden rule for radiation from a two state system into a three dimensional 

radiation field density of states. These two approaches yield the same result 

since they both rely on a quantum mechanical calculation of the charge density 

and an essentially classical calculation of the radiation field - the 3D density of 

photon states used in Fermi's golden rule is obtained from a solution of 

Maxwell's equations with free space boundary conditions, i.e. plane waves. The 

mechanical oscillator model will allow us to introduce driving fields and easily 

determine their influence on the spontaneous emission rate and oscillation 

frequency. For this reason, we will employ the semiclassical approach throughout 

the chapter and focus our attention on the calculation of the relevant accelerating 

charge density in a semiconductor. 
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be determined from Eq. (2.5). In Section 2.3, we wiJI use this similarity between 

classical and quantum scale sources to construct scale models of semiconductors. 

wave packet envelope function
" 

� 

/ 
� Bloch functions

, 
envelope functions 

� 
Fig. 2.2. Schematic of electron distribution in a semiconductor quantum well. z-axis 
perpendicular to the plane of the quanutm well. 

In this thesis, we wiII be studying radiation from a high density plasma of 

electrons and holes (such as in a semiconductor laser) or from a gas of electrons 

and holes bound together by their Coulomb interaction to form excitons. Fig. 2.2 

provides a detailed picture of the charge density in the electron-hole plasma. The 

envelope functions in the z-direction are solutions of the effective mass 

Hamiltonian for an electron or hole in a finite square well potential. The 

wavepacket envelope in the ,I- and y-directions is approximated to be a plane 

wave, i.e. the coherence length assumed to be large. Fig. 2.3 shows the electronic 

charge density as a function of time for the electron-hole recombination process, 

an interband transition. The simulation is performed for a quantum well that is 

ten lattice sites wide. The electronic charge density at each lattice site undergoes 

oscillations with an amplitude approximately equal to one lattice constant. 
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Fig. 2.3. The instantaneous electronic charge distribution for interband recombination of a free 
electron and hole. The horizontal axis is position along the z-axis. 

The envelope functions are more difficult to picture for the electrons and holes 

bound together in the exciton. As a starting point, the much heavier hole is  

assumed to be localized to a single lattice site. The envelope functions for the 

electron trapped in the attractive potential of the hole are exactly like the electron 

orbitals for the hydrogen atom. Spontaneous emission from the exciton requires 
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the electron to fall into the hole - just as in an interband transition. Since the hole 

is localized, only the charge density at the single lattice site oscillates (see Fig. 

2.4). The size of the dipole per laltice site IS considerably greater than in the free 

electron-hole case since the Coulomb interactions concentrate the charge near a 

single lattice site. This picture adequately describes the enhancement of excitonic 

transitions and the radiation pattern. 

- /\'9 A /\ -
. 

Bloch functions envelope function 

� 
Fig. 2.4 Schematic of charge distribution for a localized exciton. Upper diagram is for the 
electron and the lower is for the hole. 

The radiation pattern of the spontaneous emission depends on the spatial 

extent of the oscillating charge; an extended charge density radiates a narrow 

beam of l ight and a localized charge density radiates in all directions. 

Photoluminescence experiments confirm that a quantum well exciton radiates 

efficiently in all directions. In recent experiments by Wang, et al. (Wang, 1 995), 

excitons were generated by resonant excitation along a specific direction. The 

rise time of the luminescence at a different angle, i.e. different photon momentum 

was measured. The rise time was measured to be an order of magnitude faster 

than the exciton lifetime. This efficient coupling of spontaneous emission into all 

directions is a measure of exciton scattering from one momentum state to another. 
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The heavy exciton mass and the smalI photon momentum means that even weak 

exciton scattering - energy exchange by as little a� 50 J.LeV - is sufficient to scatter 

the exciton into all necessary momentum states. In other words, even weak 

exciton scattering will effectively localize the exciton. 

Equipped with this picture of the charge density we can estimate the 

spontaneous emission rates for both the free electron-hole pair and the exciton. 

Since these calculations all rely on Eq. (2.5) it is assumed that the charge is 

oscillating in an infinite, homogeneous environment. Placement of dielectric 

interfaces or conductors will clearly change the local electric and magnetic fields. 

In the folIowing section, we will determine how the placement of such boundaries 

also changes the total radiated power and therefore the spontaneous emission rate. 

2.2 Modified Spontaneous Emission 

The fields radiated away by a dipole oscilIating in an infinite, homogeneous 

environment never return to perturb the oscillating charge. If we place the dipole 

near a reflective boundary, i.e. a conductor or a dielectric interface, then the 

fields radiated by the charge can return to influence the charge's own motion. If 

the field returns in phase with the charge motion, it will drive the charge to greater 

ampJitude oscillations. If the field returns out of phase with the charge motion, it 

will damp the charge oscillation. In this way, the placement of the reflective 

boundary alters the power radiated by the dipole. Purcell (Purcell, 1 946) 

observed that the spontaneous emission rate was, in fact, sensitive to the 

placement of reflectors adjacent to a radiating charge and could be "controlled" 

with the inclusion of appropriate boundary conditions. Recently, several 
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researchers have investigated spontaneous emission rate modifications for optical 

transitions in semiconductors (Bjork, 1 991  and Yokoyama, 1992 and Ram, 1 995). 

The mechanical oscillator model of Eq. (2.3) can ea.;iJy be extended to include 

the influence of the reflected driving fields, E,; 

(2.6)  

Following Haroche(Haroche, 1 992) ,  we use the ansatz that the dipole 

displacement varies as aCt) = au exp( -iilt). Again we assume that the 

spontaneous emission rate is much slower than the oscillation frequency of the 

charge. The spontaneous emission rate under the influence of the reflected field is 

then 

3r (41rE c3 ) 
r' = r+-Im " Er 

2 qw3a" 
and the new oscillation frequency is 

(J) = (J) - - e -�-, 3r R (41rE"C3 E ) 4 qw3a,,' 

(2.7) 

(2.8) 

Determination of the modified spontaneous emission rate is primarily a matter of 

determining the field reflected by the nearby boundaries. 

Method of images 

A charge radiating near an ideal conductor is driven by a reflection of its own 

field. This reflected field accumulates a phase delay as it propagates to the 

conductor and back; there may also be an additional phase shift imparted by the 

reflector itself. The driving field in the mechanical oscillator model is this phase­

shifted reflection of the original field .  If we place the oscillating charge between 

two such conductors we must keep track of the field as it bounces between the 
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conductors and then drives the charge. The driving field in this case consists of a 

phase-shifted reflection of the original field after one round trip, two round trips, 

etc. The method of images is a convenient way to keep track of all these reflected 

field components. A dipole adjacent to a single conductor is equivalent to a two 

dipole system - the oscillating charge density and its image. A dipole between 

two conducting plates is equivalent to an infinite array of image dipoles. The 

location of each dipole along the z-axis is given by 

(2.9) 

where Lc: is the cavity length and zn is the location of the physical dipole relative 

to the cavity center. Fig. 2.5 shows the equivalent image dipole arrays for these 

and other geometries. 
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Fig. 2.5 The equivalent image arrays for a dipole (a) adjacent to a single mirror and (b) a corner 
reflector. and (c) inside a cavity. 

Finite reflectivity resonators can be approximated by reducing the charge on 

the image dipole. The nth dipole will have a moment of 

( )lnl12 DIl =DQ r[r! for neven (2.10) 



for n odd. 

For a symmetric resonator with 1j = '2 the above expressions simplify to 

Dn = D"r1"'. 
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(2.11 ) 

Fig. 2.6 shows the spontaneous emission rate of a free electron-hole dipole at 

the center of an ideal cavity. The spontaneous emission rate is plotted as a 

function of cavity length. Clearly the most significant alteration of spontaneous 

emission rate occurs when the reflected driving fields are large; this occurs for 

high reflectivity mirrors and small cavity lengths, i.e. small dipole to image 

separations. 

2.0 
Hertzian dipole' ID CJ in center c:: � .------•. --- O. , A from center u; 'en 1 .5 ID a: 

"0 ID .� -as 
E ... 0 0.5 z 

0.0 • .  I . 

0 1 2 3 4 5 6 7 8 
Cavity length (in wavelengths) 

Fig. 2.6 The calculated sponuneous emission nte for a free electron-hole pair at the center of an 
optical cavity. The sponuneous emission rate is plotted as a function of the cavity length. 
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Since the method of images applies only when the reflective boundary is an 

ideal conductor, it offers only a rough simulation of experiment. Realizable 

boundaries distort the reflected fields. Metallic boundaries with finite 

conductivity have reflectivities less than unity and phase-shifts upon reflection 

that depend on incident angle. Dielectric boundaries have angle dependent 

reflectivities that are described by the Fresnel equations. The simple image 

construction does not strictly apply to any of these boundaries. 

Modal Decomposition 

An alternative to the image method treatment is to decompose the reflected 

fields in terms of a complete set of modes. The set of plane waves and the set of 

cavity modes are the two most commonly employed basis sets used to decompose 

the reflected field. High reflectivity resonators with short cavity lengths are best 

described by a cavity mode decomposition since the dipole will radiate into only a 

few of these modes. Low reflectivity resonators weakly alter the free-space 

behavior of the dipole so plane waves are a more natural choice. For the moment 

we will focus on the cavity mode description. 

The equation of motion for the charge density is the same as above with the 

decomposition of the reflected field into a set of cavity modes (Em)' 
(2. 1 2) 

The cavity modes are again described by a harmonic oscillator equation known 

as the Helmholtz equation, 

(2. 13) 
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The cavity 'oscillators' are driven by the polarization of the oscillating charge. 

In the limit that only a single cavity mode is coupled to the radiating dipole, 

the dipole oscillator and cavity mode represent two coupled simple harmonic 

oscillators. An initially excited dipole radiates energy into the single cavity mode. 

This energy is coherently reabsorbed by the dipole so long as the photon does not 

leave the cavity or the dipole scatters. The dipole then reradiates the energy back 

into the cavity mode. The back-and-forth transfer of energy between the dipole 

and cavity mode is observable as oscillations in the light leaving the cavity. The 

oscillation frequency increases as the dipole-field coupling increases; as the 

emission and absorption rates increase. In the frequency domain the oscillation is 

observed as two separate emission lines. This process can also be understood 

from the perspective of supermodes for the coupled harmonic oscillators. The 

coupled system is described by supermodes that are superpositions of the dipole 

and cavity states. When the dipole resonant frequency is equal to the cavity mode 

frequency, the two supermodes are split in energy by the coupling strength 

between the dipole and field. These supermodes have been extensively studied 

for atomic vapors coupled to a single mode in a high-Q resonator (Kimble, 1 99 1 ) .  

Typically, spontaneous emission involves the excitation of many cavity modes 

by the oscillating charge. When the energy is initially in the dipole oscillator, the 

supermodes of the dipole-cavity system are all coherently excited. Since the 

cavity modes have many different oscillation frequencies, the energy initially in 

the dipole spreads out over all the accessible cavity modes. This energy returns to 

reexcite the dipole at the beat frequency between supermodes. The time required 

for the dipole-cavity supermodes to all constructively interfere is greater than the 
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electron scattering time and the photon l ifetime. Therefore, the reexcitation of 

the dipole is not typically observed and instead energy appears only to leave the 

dipole. This one-way transfer of energy from the dipole oscil lator to a 

multipl icity of cavity modes is what we observe as spontaneous light emission. 

Engineering the optical environment of the radiating dipole allows us to specifiy 

the number of accessible modes and to fundamentally alter the nature of 

spontaneous light emission by the dipole. 

2.3 Semiconductor Microcavities 

Semiconductor microcavities in the fonn of vertical cavity surface emitting 

lasers (VCSELs) have driven the development of wavelength scale semiconductor 

resonators with high reflectivity mirrors (Coldren, 1 995). Epitaxial growth of 

semiconductors enables the fabrication of high quality layered structures with 

layer thickness accuracy to a few hundredths of a wavelength. The use of 

heterostructures enables the confinement of dipoles in an optical cavity to spatial 

dimensions which are a small fraction of a wavelength. This remarkable control 

has enabled us to engineer the optical cavity so as to restrict the number of 

accessible modes and even to real ize 'reversible ' spontaneous emission 

(Weisbuch, 1 992). Again, the semiclassical oscillator formalism presented above 

will be usd to describe spontaneous emission in semiconductor microcavities. 

Distributed Bragg reflectors 

Using the reflected fields we can determine the modified spontaneous 

emission rate in a semiconductor microcavity. Unfortunately, high reflectivity 
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mirrors in semiconductor microcavities are only realized by employing multilayer 

diele",tric mirrors known as distributed Bragg reflectors (DBRs). These 

multilayer stacks require as many as 40 layers that are each a quarter wavelength 

thick. High reflectivities are realized by constructive interference of the fields 

reflected by the dielectric discontinuity between each layer. Since DBRs rely on 

the interference of light, their reflectivity exhibits a complex dependence on the 

frequency and angle of the incident light - as can be seen from Fig. 2.7. The 

high reflectivity region is called the stopband and the low reflectivity region is 

called the passband. 
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In this section we employ image methods to develop simple models of the 

modified spontaneous emission in a DBR microcavity. The complexity of the 

DBR boundary has previously required a modal decomposition approach to 

semiconductor microcavities; this plane wave decomposition employed in (Bjork, 

1 99 1 )  is numerically intensive. The image method that we develop below is the 

basis for a complete analytic treatment that can be found in (Ram, 1 995). Here 

we chose only to introduce the simplified model and present a qualitative 

discussion of its limitations. 

We seek to approximate the DBR reflectivity with the simplest possible 

reflector - the hard mirror. A hard mirror is defined CiS a reflector with a constant 

complex reflectivity (Babic, 1993), 

'i. = '"c exp( -it/J). (2. 1 4) 

The hard mirror reflection is independent of both incident angle and frequency. '"c 

can be either a positive or negative real number. We choose this simple hard 

mirror reflector since it is the most general boundary that can be represented by a 

single image dipole. 

In addition to specifying rh , we have the freedom to displace the hard mirror 

by some distance, Lpen (Fig. 2.8). As seen from this distance, the hard mirror has 

a phase variation that is dependent on both the frequency and the incident angle 

r;(k:) = '"cexp(-it/J) exp(2ik:Lpell ) = '"c exp(-it/J') (2. 1 5) 

where the phase ( t/J') varies l inearly with the frequency and with the cosine of the 

incident angle 
n o}  n.(jJ ( 92 ) 

kz = -'-cos9j = -'- 1 -- .  
c c 2 

(2. 1 6) 
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The primed variables, r� and �', indicate that the reference plane is a distance 

Lpn! away from the hard mirror and nj is the cavity index. Lprn is used as a fitting 

parameter for the phase variation in a DBR. As seen from the dashed curves in 

Fig. 2.7a.b, the DBR resembles the hard mirror only for angles and frequencies 

well within the band stop, where the power reflectivity, r; , is approximately 

constant. rc can be either positive or negative depending on the reflected phase 

shift from the DBR on exact resonance. Since a normally incident plane wave at 

the center of the stopband (with a wave vector of kc ) must have only a 0 or 1C 

phase shift upon reflection, the phase of the hard mirror ( � )  must compensate for 

the displacement, Le. � = 2kcLprn ; 

r;(k: ) = " exp( -2ikcLpn! ) exp( 2ik:Lprn ). (2. 17) 

By far the most common mistake made in implementing the hard mirror 

approximation is in neglecting the extra phase shift of the hard mirror reflection. 

It is also important to realize that the two Lpm s used in Fig. 2.7a and 2.7b 

were different. In general, the effective distances obtained from the variation of 

the phase as a function of incidence angle at the Bragg frequency, LD = _1_ �2 �' , 
2kc 08;" 

and the phase as a function of frequency at normal incidence, Lr = _� d�' 
, 

2n, d(J) 

will be different (Babic, 1995). LD is the relevant bard mirror construction for the 

method of images. The relevant hard mirror boundary is then 

r;(8j ,ru =wc )  = " exp(-i(kc - k:)2LD) (2. 18) 

This hard mirror boundary bas a reflectivity that is independent of the incident 

angle in both amplitude and phase; it does not distort the incident field. This 
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simple boundary is suitable for defininig a single image dipole. Figure 2.8 shows 

the equivalent image array for an oscillating charge adjacent to a single DBR. 

The hard mirror construction is used to determine the placement of the image 

charge. 

Spontaneous emission in a distributed mirror microcavity 

With the construction of the equivalent array, we can immediately determine 

the field profile within the resonator by using a superposition of the field radiated 

by the nIh image dipole (Balanis, 1 982): 

such that 

E = -2 qDllk
3 
COS8[_i _ __ I_Je+,.r 

nui;ul 41rEu (kr)2 (kr)3 

E qDllk3 • 9[ 1 i 1 J +,.r 6 = -- sm -+--, - --
3 

e 
41rEu kr (krt (kr) 

(2. 19) 

kr = � �(nL; + (_ I)lI lz" l _ y)2 +X2 . (2.20) 

Here 8 is measured relative to the direction of the dipole moment. L; is the 

effective cavity spacing, IZa l is the distance from the real dipole to the midpoint of 

the cavity. Fig. 2.9 shows the total reflected electric field in the plane 

perpendicular to the hard mirrors ( 9; = Tr/2 )  for a horizontal dipole. The fields 

are plotted for dipoles placed at various positions within the optical cavity. The 

radiated field is largest when the dipole is at a peak in the standing wave pattern 

and smallest when the dipole is at a null in the standing wave pattern. These two 

cases represent constructive and destructive interference, respectively, of the 

fields driving the charge oscillation. 
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DBR hard mirror image dipole 

r + 

(a) (b) (c) 

Fig. 2.8 The equivalent array of image dipole radiators to a dipole adjacent to a single hard 
mirror. 

The spontaneous emission rate at the various dipole positions can be 

calculated by using the reflected fields described by Equation (2. 1 9) in Equation 

(2.7). The DBR resonator is described by a large linear array of image dipoles. 

As a starting point, we consider a dipole radiating next to a single DBR. Using 

the hard mirror approximation (Eq. (2. 1 8» to calculate the reflected fields, we can 

express the modified spontaneous emission rates for a dipole oriented parallel and 

perpendicular to the mirrors 
� 

1 3 Im[ i. -ilal( i 
I J] - = + - r e  e -- - --

y 2 c (kd)2 (kd)3 

and 

y' 3 r 
-:!.. =1 +  c 3 [4kd cos(2kd - iP) - 2sin(2kd - iP)] r 2 (2kd) 

(2.2 1 ) 

(2.22) 

(2.23) 



34 r,� = 1 + � r.: 3 [4kd cos(2kd - qJ) + 2( 4k2d2 - 1 )sin(2kd -qJ)], (2.27) r 4 (2kd) 

where, as in Eq. (2. 14), f/J = 2(kt" - k )Lr + 2kLo also d = z + Lo where z is the 

distance from the dipole to the DBR. 

The radiation adjacent to the hard mirror differs significantly from that 

adjacent to an ideal conducting mirror. Fig. 2 . 10 shows r:/r and r:/r as a 

function of z for an idealized reflector and several DBRs, Lo = 0.0,0. 1 and 

0.2J.Lm. We see that modulation of the emission rates by the reflector is 

diminished with increasing Lo. As the penetration depth increases the driving 

field radiated by the image dipole is smaller - since the image dipole is further 

away . The large DBR penetration depth prevents the dipole spontaneous 

emission rate from being affected by the microcavity. The control afforded by 

epitaxial growth of cavities and mirrors cannot be used to realize the necessary 

effective cavity lengths to achieve strict control of the spontaneous emission rates. 
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(a) 

(b) 

(c) 

Fig. 2.9 The intracavity electric field radiated by a dipole at the center of a small optical cavity. 
The cavity is defined by two finite reflectivity mirrors that are separated by 3)./2 . The radiating 
dipole is placed at the (a) center of the cavity. (b) )./4 from the center at a null in the standing 
wave and (c) )./2 from the cenler at a peak in the resonant optical mode. 
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(b) 
Fig . 2.10 The spontaneous emission rate for a dipole adjacent to a single DBR, The spontaneous 
emission rate is ploued as a function of the distance between the dipole and mirror. The dipole is 
oriented (a) parallel and (b) perpendicular to the plane of the mirrors. The calculations are 
performed for (solid) Lo =0.0 �m. (dotted) Lo = 0. 1 J.lm and (dashed) Lo = 0.2 J.lm. 
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Additionally, DBRs exhibit high reflectivities only for near nonnal incidence. 

At large angles the DBR reflectivity is low. Spontaneous emission into the 

passband of the DBR cannot be avoided even for small ,  high reflectivity 

microcavities. Fig. 2 . 1 1 shows the spontaneous emission intensity in an actual 

DBR resonator and for the equivalent hard mirror resonator. At large angles the 

spontaneous emission is essentially unaffected by the microcavity. The DBR 

image theory is expected to overestimate its influence on the dipole spontaneous 

emission rate. 
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Fig. 2. 1 1  The spontaneous emission rate intensity versus emission angle for a dipole at the center 
of a half-wavelength cavity. The intensity is plotted for a dipole in a cavity with ideal mirrors 
(dotted) and with two GaAs/AlAs distributed Bragg reflectors (solid). The intensity is normalized 
to free space (dashed). 
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Millimeter-wave experiments 

Measurements at optical frequencies do not lend themselves to careful testing 

of the DBR image theory; measuring the dependence of spontaneous emission 

lifetime on the distance from a quantum we]) to a DBR requires the growth of 

many samples. Instead we have examined a scale model of a semiconductor 

microcavity where the measurements are performed at GHz instead of THz 

frequencies. 

Our experiments use a dipole antenna as the radiation source. Power is 

delivered to the antenna through a semi-rigid waveguide. As with spontaneous 

emission, the cavity alters the coupling strength into individual modes as well as 

the density of modes. The power radiated by the antenna can be monitored by 

monitoring the power delivered through the waveguide that is used to feed the 

dipole. A network analyzer directly relates the delivered power to the radiation 

resistance of the antenna. 

For a given array size, the driving-point impedance can be expressed as a 

summation of the dipole self-impedance and contributions from mutual coupling 

between the physical dipole and images (BaJanis, 1 982) . The location of each 

dipole along the z-axis is again given by 

(2.28) 

where L; is the effective cavity length and Zo is the location of the physical 

dipole relative to the cavity center. The driving point impedance is then 

Z .. = RiIt + jX .. = L[�n 17M = L,J;IZM 
" o f' 

" 

(2.29) 
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where Zoo is the self-impedance of the (physical) dipole. and Z ... , is the mutual 

impedance between the dipole and its n th image separated by a distance ( z" to 

zo)' Dipole-cavity resonance occurs when Xi" = O .  For thin, center-fed dipoles of 

length I and radius a, a single expression for both the self and mutual impedance 

can be found using the induced EMF method (Ram, 1 994), 

where 

Z = j- --+--2cos(kl/2)- dX 1] II/2 sin k( 1/2 -Ixl)[ e -JUt, e -#t e -JUl. ] 
/IIJ 41r -1/2 sin2 (kl/2) K, R, Ru 

(2.30a) 

(2.30b) 

Equations (2.29) and (2.30) provide a simple means for investigating the 

influence of mutual coupling on the dipole impedance as a function of array 

spacing and frequency. The real part of the self-impedance is the free-space 

radiation resistance from the dipole and each of the mutual coupling terms 

represents perturbations on the free-space radiation rate. 

We use a microwave vector network analyzer to directly measure radiation 

rates from a dipole antenna. Figure 2. 1 2  shows the measurement set-up for the 

microwave measurements. These measurements were made at 1 1 .4 GHz with an 

HP8720 vector network analyzer, using an unbalanced 2.7 cm dipole, center-fed 

from a semi-rigid coaxial cable. Figure 2. 1 3  shows a sample measurement of the 

radiation resistance versus dipole position in a cavity constructed from two copper 

sheets measuring 30 cm on a side. The theoretical result from Eq. (2.30) is also 

shown for comparison. Both curves have been normalized to the respective 

impedances measured without a cavity, and show very good correlation in the 

behavior of impedance with location. Note that the extrapolated radiation 
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resistance does not got to zero at the cavity walls because of the finite 

conductivity of the copper and the residual losses in the antenna. 
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Fig. 2. 1 2  The measurement set-up 
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Fig. 2.13 The measured radiation resistance for a small dipole antenna inside a cavity defined by 
two copper plates. 
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This same measurement approach was used to test the influence of a single 

DBR on the radiation resistance of a dipole. S ince the induced EMF method does 

not have explicit dependence on the incidence angle, it is difficult to introduce the 

effects of a finite mirror band wiuLJ'l into this treatment. The method of complex 

images (Shubair, 1 903) allows one to apply the induced EMF method to the exact 

DBR, but we wish only to establish how well a singie image element 

approximates the DBR boundary. Since we neglect the fact that the mirror has a 

finite band stop, our theory is expeded to overestimate the achievable inhibition 

or enhancement by the DBR. 

The alteration of the dipole emission rate at 3 .7 1  GHz by a single dielectric 

DBR w�.s observed. The millimeter wave DBR consisted of 5.5 periods of air and 

RexoJite 1 422 (a nearly loss less dielectric with an index of refraction of 1 .56). 

The Bragg wavelength for this DBR was 8.08 cm (3.7 1 GHz). The peak 

reflectivity was .9848 (assuming no losses). This structure had LD = 2.343 cm. 

The radiation resistance was compared to the results of the induced EMF 

method using a two element array modeled accordir � to the hard mirror 

construction described above (Fig. 2. 14 ). Both curves helve been normalized to 

the respectiY.! impedances measured in  free space, and show ';f!ry good 

correlation in the behavior of impedance with location. It is important to note that 

there are no fitting parameters in the theoretical curve. Using only the high and 

low indices, the dimensions of the DBR and the dir.1cnsions of the dipole antenna, 

the theory curve was specified exactly. Upon comparisun, we see that the 

agreement greater than a quarter wavelength away is good suggesting that our 

technique for the construction of the equivalent dipole array is reasonable. The 
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experiment confirms that an image element constructed according to the hard 

mirror construction approximates the DBR's influence on the dipole emission rate. 
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Fig. 2. 1 4  The measured radiation resistance for a small dipole adjacent to a single distributed 
Bragg reflector. The dashed line shows the calculated radiation resistance using the equivalent 
hard mirror construction. 

The hard mirror resonator - and the image theory developed above -

overestimate the influence of the microcavity on the spontaneous emission rate. 

Despite a short cavity length and h igh reflectivity mirrors the semiconductor 

microcavity is unable to influence the spontaneous emission rate significantly. 

The DBR microcavity cannot completely alter the environment for the dipole, the 

passband is effectively a hole in the resonator and the effective cavity length is 

large. Given the limitations of the optical environment we must pay more careful 
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attention to the radiation pattern of the electrons. In the next section. we realize 

single mode coupling by fundamentally altering the distribution of the oscillating 

charges in momentum space. 

2.4 Microcavity Exciton-Polaritons 

Distributed Bragg reflectors are the ideal mirrors for surface emitting laser 

applications. They offer high reflectivities at their resonant frequency and can be 

easi ly integrated into short cavity laser structures. In a conventional 

semicondcutor laser, threshold is determined by the optical losses seen only by 

the lasing mode. The optical environment must be optimized only for this single 

mode - in only one direction and for one frequency. In a microcavity laser. the 

optical environment must affect the modes in every direction and of every color. 

As we saw in Section 2.3, DBRs are not suited for such demanding applications. 

An alternative approach is to modify the emission properties of the oscillating 

charges so as to couple light into only a few directions. In Section 2. I ,  we 

presented a picture of the exciton as a localized oscil lating charge radiating in all 

directions. The exciton was able to radiate into all directions because the 

scattering between different exciton momentum states was strong and the energy 

required to scatter from a state radiating in one direction to a state radiating in a 

different direction was never more than 50 f.le V. The same argument applies to 

free electrons and holes which also have fast momentum scattering times and can 

radiate in all directions. Suppressing scattering events between neighboring 

momentum states would effectively restrict the modes into which an oscillating 

charge could radiate. 
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Equation (2.8) describes a characteristic shift in the resonance energy of a 

dipole coupling to light. This shift varies with the momentum of the oscillating 

charges. When the energy and momentum for the oscillating charge and the 

emitted photon are the same, there is optimal coupling and a correspondingly 

large shift in dipole energy. At different momenta the coupling is effectively 

smaller and the shift becomes smaller. Since the different momentum states 

experience different energy shifts, strong-coupling to light is a way to change the 

energy required to scatter from one momentum state to another. For a free 

electron-hole, the coupling can shift the energy only by 40 JleV; this shift is small 

and does not effectively suppress the scattering between momentum states. 

These free electron-hole pairs still radiate into all directions , i.e. couple to many 

optical modes. Excitons couple more strongly to light. The strong-coupling 

energy shift is 100 times larger than for free electron-hole pairs. These excitons 

couple more strongly to the light field than to other momentum states. By 

suppressing momentum scattering, single mode emission becomes possible even 

in a DBR microcavity (Weisbuch, 1 992). 

Exciton-Polaritons in GaAs 

The microcavity structure (Fig. 2. 1 5) investigated consists of a top mirror with 15  

AlO. l l Gao.89As/AIAs periods, a AlO.3Gao.7As cavity of thickness L c  = A. and a 

bottom mirror with 20.5 Alo. 1 1Gao.89As/AlAs periods (Goobar, 1 996). A single 

GaAs quantum well (QW) of thickness L QW = 150 A is placed at the center of the 

cavity which has its resonance aligned to the heavy-hole exciton (HHx) absorption 

line at around 10 K. The reflectivity of the structure was studied by illuminating the 
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sample with a white light source and measuring the reflection with an optical 

spectrum analyzer. The "empty cavity" linewidth was measured at 200 K when the 

exciton absorption was detuned from the cavity resonance. The measured spectra at 

this temperature exhibited a resonance linewidth of flEe = 0.6 meV. This linewidth 

was also verified in measurements done on a true empty cavity, e.g. a separately 

grown sample consisting in only the cavity and the mirrors. At 1 0 K, the HHx and 

light-hole exciton (LHx) photoluminescence Iinewidths were flEHHx = 0.45 meV and 

flEUfx = I meV, respectively. The separation between the two PL peaks was 7 meV. 

An impurity bound exciton I me V below the HHx resonance could also be observed. 

DBR 
( 1 5  X Alo. 1 1  Gao.agAs/AIAs) 

OW ( 150 A GaAs) 

DBR 
(20.5 x A1o. 1 1  Gao.agAs/AIAs) 

Fig. 2. 1 5  A SEM micrograph of a microcavity sample with a one wavelength optical resonator and 
high reflectivity distributed Bragg reflectors. The quantum well and cavity are designed for optimal 
exciton-photon coupling at 10 K. 

Due to the growth inhomogeneity, the thickness of the cavity becomes graduall y  

smaller toward the edge of the wafer. Consequently, the resonance of the cavity 

Ee( r) shifts toward higher energies. In the strong coupling regime, as Ec(r) 
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approaches the heavy-hole EHlb (r) and light-hole ELHz (r) excitonic resonances, anti­

crossings between the interacting modes occur. The anticrossings are a result of the 

strong coupling between the exciton and the single optical mode. As described in 

Section 2.2, the exciton dipole and the cavity field represent two coupled harmonic 

oscillators. The coupled oscillators are described by supermodes called polaritons. 

Two polariton branches are constructed from superpositions of the exciton and 

photon states (Weisbuch, 1 992). When the dipole resonant frequency equals the 

optical mode frequency, i.e. at zero detuning, the two supennodes are split by an 

energy proportional to the coupling strength between harmonic oscillators. 
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The anticrossings are more clearly observed in Fig. 2. 1 7  where the reflectivity 

minima vs. position and detuning. Ec(r) - EHH� (r) .  are presented. The dots are the 

measured energy values of the reflectance minima at 1 0 K. Two anticrossings are 

observed; the 3.7 me V splitting due to the C - HHx coupling at zero detuning is the 

largest reponed for a single QW in the GaAs material system. The narrower 2.4 

meV splitting at 7 meV detuning is due to the C - LHx coupling. The smaller C -

LHx splitting is due to the lower oscillator strength of the LHx. From these 

measurements the ratio of the HHx oscil lator strength to that of the LHx is 2.4, which 

is in good agreement with both theoretical and experimental values reponed 

previously (Fisher, 1 995, Andreani, 1 990 and Savona, 1 995). The supermode 

splitting can be calculated as 21i!J.HHz(LHZ )= 21ie�fHHZ(LHzJ2n�EomoL� (Savona, 

1 995), where fHHz(LHx l ' ne. and L� = Lc + 2LD, are the oscillator strength of the 

HHx (LHx), the refractive index in the cavity and the effective cavity length 

including the penetration depth in the DBR mirrors, respectively; Eo ' mo and e are 

the dielectric constant for vacuum, the electron mass and the electron charge, 

respectively. According to (Andreani ,  1 994), for a 1 50 A GaAs/Alo.3G�.7As QW, 

fHHx = 40 1 0-5 A-2 and fUlx= 1 6.7 10-5 A-2. Using nc = 3.4, and the calculated L� = 

860 nm (Babic, 1 993), the splitting values 21i!J.HHx= 3 .3 meV and 21i!J.LHx= 2. 1 meV 

are obtained, which are in reasonabl e  agreement with our measurements. 
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Fig. 2. 1 7  Reflectivity vs. detuning b y  translation of the wafer. The dots are the measured energy 
minima at 1 0 K. The solid lines are the calculated eigenvalues. The dashed lines are curve tits to the 
measured functions EcC r) , EHHx (r)and EUI/r)of the bare states which are used as input 

parameters in the calculation. 

In the same figure the calculated polariton energies (solid lines) and curve fits to 

the measurements of the uncoupled bare states vs. position (dashed l ines) are 

presented. The cavity resonance energy EcCr) was measured by raising the 

temperature of the sample to 200 K (effectively decoupling the exciton and photon 

systems) .  The exciton resonance energies EHHx (r) and EUix (r) were measured 

through PL measurements on a separately grown sample without Bragg mirrors. The 

calculated polariton energies are determined by solving the system of three coupled 
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differential equations. Two equations represent the LHx and HHx dipole oscillators 

(similar to Eq. (2. 12» and one equation represent the single cavity mode, Eq. (2. 1 3) .  

In the PL measurements. the microcavity is excited non-resonantly with a CW 

GaAs semiconductor laser emitting at 7S0nm. Since the exciton peaks shift faster 

than the cavity mode as temperature is increased from 1 0  K to 1 40 K, the 

excitons can be tuned into resonance with the cavity, as can be observed in Figure 

2. 1 S. These measurements were performed at r =  5.5mm, corresponding to a 0.4 1 

meV detuning at 10  K. The dotted traces are the energy values of the measured 

luminescence peaks as a function of temperature detuning. Again, two anti­

crossings are observed with the same separation as in the previous figure. On the 

same figure, the calculated energies and plots of the energies of the bare states vs. 

temperature E c< T), E HHz (T),  and E u/;t (T) are presented. E c ( T )  is a curve fit 

to the measurements of the cavity resonance vs. temperature made with the true 

empty cavity, whereas EHHz (T) ,  and EU/z ( T) were fitted to measurements of PL 

vs. temperature on the separate sample mentioned above. 
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Fig. 2. 1 8  Photoluminescence vs. detuning by changing the temperature of the sample. The dots are 
measured photon energies at a fixed position. The solid lines are the calculated eigenvalues. The 
dashed lines are curve fits to the measured functions E c ( T). EHHz ( n .  and EUiz ( nof the 

bare states which are used as input parameters in the calculation. 

The position and temperature dependence of the bare states Ec( r. n. EHJU ( r. n  

and EUlz ( r, n  were measured as explained above. The PL measurements on the QW 

sample, EHHz ( r, n  and Euu (r, n  were made at the center of the wafer only. It is 

assumed however that Law exhibits the same relative inhomogeneity vs. radial 

position on the wafer as the cavity does, such that CLQw(r)/Law = -OEc(r)/Eco ' In 

order to account for this effect the excitonic energies are corrected as 
1i21C2 OLQw (r) 5£,(r) = mR,L�w Law '  (2.3 1 ) 
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where i = HHx or LHx. The reduced masses are mR.UI� = O.037m" and 

mR.HH� = O.059mo ' where mo is the electron mass in vacuum. 

The agreement between the measured polariton energies and the coupled 

oscillator theory suggest that both excitons couple only to a single cavity mode. 

The 3.7 meV and 2.4 meV energy shift in the polariton spectra indicate the energy 

separation between neighboring momentum states. These shifts are two orders of 

magnitude large than for electron-hole pairs in a similar microcavity. The 

reduced momentum scattering and subsequent reduction in the number of 

accessible modes allows us to accurately model the polaritons with a system of 

only three oscillators. Single mode coupling is realized for these microcavity 

excitons. 

2.5 Summary 

In this chapter, we have discussed the alteration of spontaneous emission rates 

achievable with semiconductor microcavities. Our goal is to achieve single mode 

emission - to suppress spontaneous emission into all modes other than the lasing 

mode. As discussed in Chapter 1 ,  increasing the efficiency implies reducing the 

total spontaneous emission rate and therefore the number of accesible modes .  

Semiconductor microcavities are severely limited in their ability to alter the 

spontaneous emission properties for free electron-hole pairs. Free electrons and 

holes can couple to photons with a broad range of momenta. This means that 

radiation into the passband and the angular dependence of the DBR reflectivity 

(the penetration depth) are both important to the spontaneous emission process .  

In an effort to limit the interaction of the oscillating charge with all nonresonant 
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plane waves, we have explored the possibility of isolating neighboring 

momentum states. This technique only works for dipoles with sufficiently strong 

field coupling that a significant energy shift could be realized. The large dipole 

moment for quantum well excitons makes ' them ideal candidates for this sort of 

'momentum space bandgap engineering.' In fact, measurements on excitons 

within a semiconductor microcavity indicate that the excitons strongly interact 

with only a single plane wave mode. The strong interaction of the excitons with a 

single optical mode enabled the formation of polaritons. 

The remainder of this thesis will explore coherent light generation by both 

electron-hole pairs and excitons within microcavities. The next chapter defines 

the advantages and further explores the practical limitations of achieving single 

mode lasers with free electron-hole sources. As we have described in this 

chapter, within a semiconductor microcavity only excitons are able to realize 

single mode emission. The consequences of using excitons (bosons) instead of 

electron-hole pairs (fermions) as the coherent light source is the focus of Chapter 

4. 
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Chapter 3 
SEMICONDUCTOR MICROCA VITY LASERS 

3.1 Microcavity Lasers 

The semiconductor lasers used in CD players have cavity lengths - the 

distance between mirrors - of 300llm and waveguides measuring 31lm across and 

1 Ilm high. Relative to most gas and solid state lasers, semiconductor lasers are 

extremely small - approximately 1 013 times smaller volume. For comparison. a 

bucket of water is 101 3  times smaller than the Mediterranean Sea. Relative to the 

wavelength of light they emit, 0.85J.lm, CD lasers are large. Since the refractive 

index of GaAs is approximately 3.5, the wavelength inside the optical cavity is 

only 0.24Ilm. The laser cavity is approximately one thousand wavelengths long 

and almost one hundred square wavelengths in cross section. Before the onset of 

stimulated emission, the excited electrons in these lasers spontaneously emit light 

into approximately one million closely spaced cavity modes. All of these modes 

compete for photons and one eventually lases. From that point on, this one mode 

receives all of the additional photons radiated by the excited electrons. 

Competition for photons is not this tough in all semiconductor lasers. 

Vertical cavity surface emitting lasers (VCSELs) have much smaller cavity 

volumes (Fig. 3. 1 ). The cavity length is typically one wavelength. The short 
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cavity length ensures that there is only one longitudinal mode accessible to the 

excited electrons. The spacing between longitudinal modes is given by 
A? 

M = 2L + A. (3 . 1 )  

A GaAs VeSEL emitting at a wavelength of O.981lm has a mode spacing of 

93nm, or twice the width of the gain spectrum at room temperature. Associated 

with this single longitudinal mode are a continuum of radiation modes and several 

transverse modes that are accessible to the excited electrons. The dimensions of 

the waveguide determines the transverse mode structure. When the transverse 

dimension is only 0. 1 Ilm, the microcavity is a true single mode cavity (Saba. 

1 99 1  and Vurgafiman, 1995). This mode does not have to compete for photons. 

p-type DBR 

Cavity { 

n-type DBR 

n-type GaAs Substrate 

Fig. 3 . 1  Schematic of a surface emitting laser structure. 

When studying semiconductor lasers, we must keep track of both the number 

of excited electrons and the number of photons. Energy is pumped into the 
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electrons by an injected current, I .  This injected current consists of an excited 

electron that enters the active region and a low energy electron that leaves the 

active region. Neglecting nonradiative recombination processes and assuming a 

single mode cavity, the energy lost by the electron appears as light in the cavity 

mode either by spontaneous emission or stimulated emission. The stimulated 

emission rate is proportional to the number of photons already within the cavity 

mode whereas the spontaneous emission rate is independent of the photon 

number. These photons can either leave the cavity or be reabsorbed by low 

energy electrons. All of these processes are summarized by the following set of 

coupled rate equations for the excited electron (N) and photon number (P). 
dN = 11l _ w P + W P - W dt q 

sl .m sp 

dP = W P - W P + W - .!... 
dt 

Sl .m sp 'r p 

(3.2 )  

where 11,1 i s  the fraction of the injected current that enters the active region and 

'r p is the lifetime of a photon in the optical cavity. Under steady state conditions 

( dldt = 0 ), the two equations state that 
n 'r p = -" -' _P I . 
q 

(3.3 ) 

The photon number in the single mode is proportional to the injected current 

regardless of the emission mechanism, whether spontaneous emission or 

stimulated emission. The slope efficiency of a single mode laser without 

nonradiative recombination does not depend on the emission mechanism. Once 

energy is added to the device by the injected current it can only be removed by 

light generation into the single optical mode; spontaneous emission into other 

modes, lattice heating, or Auger processes are not options. This laser does not 
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have the turn-on or threshold of conventional multimode lasers which require 

stimulated emission for single mode operation. Realizing such a thresholdless 

laser in the laboratory requires small optical cavities which limit the number of 

modes. It also requires careful attention to processes such as surface 

recombination, diffusion out of the active region, trap and Auger recombination -

essentially any process which competes with light generation into the single 

optical mode. 

In Section 3 .2, we introduce the general formalism for treating multimode 

semiconductor lasers. The formalism presented in this chapter corrects several 

inconsistencies in the treatment of spontaneous emission found in the literature. 

Section 3 .3 discusses the potential benefits and limitations of true single mode 

lasers. Section 3.4 presents the first experimental analysis of the threshold 

process in lasers with small cavity volumes - only one hundred cubic wavelengths 

in volume. We also discuss the scaling of nonideal effects such as optical 

scattering and carrier diffusion as we reduce the cavity dimension. 

3.2 Spontaneous Emission Factor 

A theory for multimode semiconductor lasers can be constructed by extension 

of Equation (3.2). Additional modes result in the following coupled system of 

equations, one for the excited electrons and one for the photon number in each 

optical mode, 



59 

(3.4) 

In steady state, the total power in all of the optical modes is again proportional to 

the injected electrical current 

(3.5) 

Collection of light from all optical modes is not possible for conventiona:I 

semiconductor lasers. The finite size of the detector used to collect the laser light 

and the scattering and absorption of light by the electrical contacts and the 

measurement apparatus make collecting all of the light nearly impossible. The 

light in only a few cavity modes reaches the detector. After all, we design the 

measurement apparatus to collect light primarily from the lasing mode. If we 

designate Po as the photon number in the lasing mode and assume that the photon 

number for all other modes is small, we can reduce the large system of equations 

to only two equations, 
dN 11/ � 
d
t = - - w.,.oPo + Wah.oPo - k w.p.m 

q m 
dPo Po 
d
t = W",.oPo - �b.OPo + w.p.o - r p 

(3.6) 

Because the number of photons in the nonlasing modes is small ,  we have 

neglected their absorption and stimulated emission. Spontaneous emission into 

these modes, however, cannot be neglected. 

In the literature, this simple formalism has been complicated by the 

introduction of a spontaneous emission factor (Yamamoto, 1 99 1  and Yokoyama, 
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1 992). The spontaneous emission factor represents the fraction of spontaneous 

emission that enters the lasing mode 
/3 - w.,..o 

- I,�P./II · (3.7) 

/II 

When the excited electrons radiate the same amount of spontaneous emission into 

every accessible cavity mode, the spontaneous emission factor can be 

approximated as the reciprocal of the total number of modes (M) 
W W I 

/3 = .,. = .,. = -I, �P./II I, W.,. M /II /II 
(3.8) 

This approximation is only useful for lasers with many closely spaced cavity 

modes at nearly the same transition energies. 

The above rate equations can be expressed in terms of the spontaneous 

emission factor 

(3 .9) 

It is truly unfortunate that the semiconductor laser community has adopted a 

formalism which replaces the single term in (3.6) with the ratio of two 

summations. In order to conform to the published literature we wil l  use the 

spontaneous emission factor. 

Rate Equation Analysis 

So far, we have not considered the specific light emission processes in 

semiconductor media. The rate equations expressed above have not explicitly 
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stated a dependence of  either W." Wah' and Wsp on the number of  excited 

electrons. In this chapter, we are interested in small cavity lasers (Fig. 3 . 1 ) .  The 

laser cavity consists of two high reflectivity distributed Bragg reflectors (DBRs). 

These mirrors are separated by a cavity length of one wavelength, O.3J.UI1 at the 

lasing wavelength of O.98J.1.m. The excited electrons responsible for l ight 

emission are confined to InGaAs quantum wells. In order to model the 

performance of these lasers we must consider the electronic band structure of the 

semiconductor and the distribution of the electrons in these bands. Following the 

treatment of (Coldren 1 995), we develop the concepts of bimolecular 

recombination, logarithmic gain models and gain saturation. 

The rate of spontaneous emission into all optical modes is usually modeled as 

a bimolecular process - Lm �p.m = BN2• The total spontaneous emission rate 

increases quadratically with the density of excited electrons. As more excited 

electrons enter the active region of the laser they distribute themselves over a 

greater range of kinetic energies. Figure 3.2 shows the spontaneous emission 

spectra versus electron density calculated in (Coldren, 1 995). Increasing the 

electron density increases the number of electrons at high kinetic energies. These 

electrons can emit into cavity modes that were not previously accessible thereby 

opening new pathways for spontaneous emission. Not only the value of the 

bimolecular recombination coefficient, but also the quadratic dependence of the 

spontaneous emission rate relies on the existence of optical modes into which the 

electrons can radiate. Here, we consider lasers with relatively large transverse 

cavity dimensions so there are enough accessible modes to justify the bimolecular 

recombination model. 
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Fig. 3.2 Spontaneous emission spectra for various densities of excited electrons. The spontaneous 
emission spectrum broadens as the total electron density increases. 

Stimulated emission and absorption both depend linearly on the number of 

photons in the optical mode. The conventional rate equation analysis lumps these 

two processes into a single gain term; W.rt - Wah = vIIg(N) . Since this gain is 

expressed in units of inverse centimeters the group velocity of the photons is used 

to establish a net photon generation rate. In a simple two level model - which is 

generally not applicable to semiconductor media, the stimulated emission rate is 

�, = vIIKN2 and the absorption rate is Wah = VgKN, where Kis a constant of 

proportionality. The net gain is g = K( N2 - N, ) . We can recover the stimulated 

emission rate from the net gain by using the population inversion factor ( n.rp); 

Wsr = nspvgg .  This equation defines the population inversion factor. For example, 

the population inversion factor for the two level system is nsp = N2/( N2 - N, ) .  
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As the relative number of excited electrons increases the population inversion 

factor approaches unity. In a semiconductor, the net gain has a nontrivial 

dependence on the electron density. Figure 3.3 shows the net gain versus carrier 

density for an 80A InGaAs quantum well. The figure shows the gain seen by a 

single mode at a well defined frequency. Initially the increase in the overall 

number of excited electrons also causes an increase in the number of electrons 

that emit into the optical mode. As the electron density increases, the electronic 

states that coincide with this optical mode become full and the gain staMs to 

saturate. This density dependence is often approximated by a logarithmic gain 

function - g( N) = gu In[ N + N' l (Corzine, 1 990). 
N" + N, 
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Fig. 3.3 Net gain versus the density of excited electrons. 
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The bimolecular recombination model, the net gain and the spontaneous 

emission factor can all be used to generate the conventional multimode rate 

equations for the excited electron and photon numbers ( N  and Po)  and densities 

( n  and Po)' 
dN = TI/ _ v g(N)P. _ BN2 
dt q , 0 

dP. P. 
_

0 = rv,g(N)Po + rpBN2 _ ....2. 
dt rp 
dn TI/ ( ) B' � - = --- v,g n Po - n-
dt q�c 

dpo = rv g(n)p + rpB'n2 _ Po 
dt K 0 r p 

(3. 1 0) 

(3. 1 1 )  

where r is the confinement factor and Y..(" is the active region volume. The two 

bimolecular recombination coefficients are related according to B' = It;,("B. These 

rate equations are given for both the excited electron number and the photon 

number as well as the electron and photon densities. 

Spontaneous Emission Factor 

By definition f3 is the fraction of radiative current contributing to spontaneous 

emission into the lasing mode: P = (l,p / )/(lsp/ ) .  The spontaneous emission lIu,r 10lal 

rate into the lasing mode is  equal to the stimulated emission rate when the cavity 

contains a single photon; therefore P = Inlp. _ ,/1 ... / . 
0 - -r IOlal 

For the simple case of a linear gain model, 

g(N) = go(N - No) , 

and a constant carrier lifetime, 
N 

I,Wsp.m = -, m rsp 

(3 . 1 2) 

(3. 13) 



the expression reduces to the well known form (Bjork, 1 99 1 )  
f3 

= 
ISllpD=l/v_ n g,,( N -N,,)v, 

111'1 rp VawN IfIp IDUlI 

= 
N g,,(N - No)v, 

= 
g"v,fIP 

N-No v"avNlfIp Vaw 
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(3 . 14) 

where, go is the gain coefficient, N" is the transparency carrier density, and fIP is 

the spontaneous lifetime. The microcavity alters both the confinement factor and 

the total spontaneous emission rate. For this simple model, f3 is found to be 

independent of electron density - as the electron density increases, the emission 

into the lasing mode and the total spontaneous emission rate increase by the same 

amount. 

A realistic gain model , however, shows that f3 decreases with increasing 

electron density. Using bimolecular recombination and a logarithmic gain model 

we see that (Ram, 1 996) 

I 
[ N + NJ ] 

I gu n VII f3 Sl ip =lfV . N" + NJ - n "" - n - 1 - Ip , . Isp V"tn.BN-IOlal 
(3. 15 )  

The spontaneous emission coupling factor explicitly depends on the carrier 

density. As the electron density increases, the spontaneous emission spectrum 

broadens and the gain saturates. Figure 3.4 plots the spontaneous emission factor 

versus carrier density for a typical InGaAs quantum well surface emitting laser. 
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Fig.3.4 The spontaneous emission factor versus the density of excited electrons. 

The spontaneous emission factor increases as the cavity volume decreases. 

This is because the peak field amplitude for a single cavity photon increases as the 

cavity shrinks. The increased field amplitude results in a larger electron-photon 

coupling and a subsequent increase in the gain and spontaneous emission rate into 

the optical mode. The explicit volume dependence in (3. 1 5) is a result of this 

enhanced interaction. In addition to this explicit dependence on cavity size, there 

is an implicit dependence in the bimolecular recombination coefficient. A small 

cavity offering only a few accessible cavity modes will have a smaller 

recombination coefficient (spontaneous emission rate) and a larger p. 
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Microcavity lasers attempt to optimize f3 by exploiting this implicit dependence 

on the cavity volume. 

3.3 Tbresboldless Lasers ? 

Of all device parameters, laser threshold is most sensitive to changes in the 

spontaneous emission factor. Laser threshold is defined by a balance between the 

exponential increase in photon number due to stimulated emission and the loss of 

photons due to scattering and finite reflectivity mirrors (Siegman, 1 986) 
1 

fg(N)vJ: = - . (3. 1 6) Tp 
If the rate of photon generation could exceed the optical losses. stimulated 

emission would cause a 'runaway' in the number of photons. Such an 

exponentially increasing photon number cannot be supported by the finite number 

of excited electrons supplied by the injection current. The net steady-state gain 

can never exceed the threshold gain defined by (3 . 1 6) .  The excited electron 

density cannot exceed the density corresponding to this threshold gain. Figure 3 .5 

shows the optical power, net gain, and carrier density versus the injection current 

for a conentional InGaAs laser with f3 = 10-6 .  Indeed, the electron density and 

net gain appear to clamp at their threshold values. Coincident with the clamping 

of the electron density is a rapid increase in the efficiency of photon generation in 

the lasing mode. The stimulated emission rate into the lasing mode at this 

threshold point is so high that any additional electrons supplied by the injection 

current are quickly converted into photons in the lasing mode. Laser threshold 

essentially defines the electron density required to obtain single mode emission. 
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Fig. 3.5 (a) Optical power, (b) excited electron density, and (c) net gain versus injection current 
for a conventional edge-emitting laser structure with a fj=l£r. 
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The above analysis is not applicable to true single mode microcavity lasers 

without nonradiative recombination. Equation (3 . 1 6) overestimates the excited 

electron density required for nearly single mode emission. Figure 3 .6 shows the 

photon number and carrier density versus injection current for various f3, but the 

same optical loss. A microcavity with only a single accessible optical mode 

( f3  = 1 )  always has single mode emission regardless of the carrier density . 

Threshold is not a meaningful concept in this case. As we show below, the 

threshold condition expressed in Eq. (3. 1 6) is only valid in the limit f3 � O.  
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Fig. 3.6 (a) Optical power and (b) excited electron density versus the injection current. The 
results for various spontaneous emission factors (�l ,  lO.z, and 1 0-') are plotted. 

The flaw in the above threshold condition is that it neglects the contribution to 

the steady state photon number coming from spontaneous emission into the lasing 
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mode. As we stated above, laser threshold is defined by the balance of emission 

into the lasing mode and optical losses. The 'gain equals loss' condition assumes 

that the photons are added to the lasing mode only by stimulated emission - in fact 

there is always some spontaneous emission also contributing photons to the lasing 

mode. Real lasers never satisfy (3. 1 6) since this would involve having more 

photon generation (stimulated and spontaneous emission) than loss and would 

lead to runaway. The steady state photon density in the lasing mode, as obtained 

from (3. 1 1 ), can be expressed as 

Po = 1 . 
- - rv g(N) 
r ' p 

(3. 1 7) 

There is a singularity in the photon number when the net gain equals the loss. In 

fact, the net gain asymptotically approaches the total optical losses; the kink in the 

light versus injected current curves always coincides with a net gain smaller than 

the optical losses. 

3.4 Limits to Practical Laser Performance 

Reducing the number of accessible optical modes reduces the energy wasted 

in a laser. The energy saved by eliminating spontaneous emission into nonlasing 

modes can be used to generate light in the lasing mode. Realizing this in 

semiconductor lasers requires small cavity volumes and weak nonradiative 

recombination. Nonradiative processes such as Auger recombination, surface 

recombination, and carrier diffusion can frustrate any efforts to improve the below 

threshold efficiency of microcavity lasers. Reducing the number of optical modes 

is not helpful if a large amount of energy is being wasted through nonradiative 
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processes. Without nonradiative recombination the fraction of the injected energy 

appearing the lasing mode below threshold is (3. Additional recombination 

pathways reduce this fraction to .",{3 - where .", is the fraction of the excited 

electrons that relax by emitting photons 

I, W!p.m 
(3. 1 8) 

m 
Figure 3.7 shows the photon number versus injection current for a laser with a 

radiative efficiency less than one. There is a distinct threshold even for a true 

single mode laser. 
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Fig. 3.7 Optical power versus injection current for microcavities with various spontaneous 
emisison factors <{3= I ,  lo-l, and 10-4). The below-threshold radiative efficiency is 1 % .  

In the following section, we study laser threshold in  small surface emitting 

lasers. These lasers were grown and processed by Matt Peters at UCSB (Goobar, 
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1 995). The measured devices have cylindrical post geometries where the top 

mirror has been etched to the top cladding layer (Fig. 3.8). Etching only to the 

cladding layer provides optical confinement of the spontaneous emission while 

avoiding non-radiative surface recombination (Peters, 1 994). The n-type bottom 

mirror consists of 1 6.5 AIAs/GaAs periods. The p-type mirror consists of 30 

periods of Alo.67Gao.33As/GaAs layers. In order to lower operating voltages and 

minimize heating effects, the mirrors have util ized graded heterointerfaces and 

dipole doping. The active region consists of 0. 1 2  J,lm Alo.sGao.sAs confinement 

layers surrounding a gain region with three 8 nm InO. 1 8SGao.8 1 SAs QWs with 8 nm 

GaAs barriers. 

Active 

n-type DBR 

n-type GaAs Substrate 

::7:::: .---.... , :::��:: 
Contact Coating 

Fig. 3.8 Schematic of the measured device. 
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These devices were designed for low temperature operation in the 7 1 - 1 50 K 

range. Optimization for low temperatures requires adjusting the cavity length so 

as to ensure that the cavity mode is aligned to the strongest elctronic transition at 

the desired operating temperature. In Appendix II, we summarize the temperature 

dependence of the cavity's resonant wavelength and the peak wavelength of the 

electronic transition. Low temperature operation helps to increase both f3 and 11, . 

The range of kinetic energies over which the excited electrons are distributed is 

reduced at low temperature. This. in turn, reduces the width of the spontaneous 

emisson spectra and limits the number of accessible optical modes. The reduction 

in the number of high kinetic energy electrons also reduces the rate of Auger and 

trap assisted nonradiative recombination. The cryogenic operating temperature 

and the absence of surfaces near the active region eliminates many undesirable 

recombination pathways. This cavity design is expected to improve the below 

threshold efficiency of the semiconductor laser. 

Measuring Spontaneous Emission Factor 

In order to measure 13, the lasers are mounted (top-side down) on a cold finger 

cryostat. The measurement geometry is shown in Figure 3 .9. A 50 Ilm multi mode 

optical fiber (NA=0.2) is positioned several millimeters below the sample to 

spatially filter the spontaneous emission. Spectral filtering is achieved by 

adjusting the resolution bandwidth (RBW=0.2 nm) of an optical spectrum 

analyzer. This allows us to measure only the spontaneous emission into the lasing 

mode. The measurements performed using large resolution bandwidths are 

underfiltered so that light from several nonlasing modes is also collected. In this 
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case, the light versus injection current exhibits smaJIer discontinuities at 

threshold. On the other hand, overfiltering the laser mode ( i .e .  reducing the 

resolution bandwidth until the above threshold emission is cutoff) does not affect 

the shape of the light versus injected current curve. Figures 3 . 10  and 3 . 1 1 display 

the light versus current characteristics of two devices with 9- and 3-J.lm diameters. 

respecti vely. 
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Fig. 3.9 The measurement set-up 
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Fig.  3 . 1  J .  Light versus current for a 3-�m diameter device at a heat-sink temperature of 1 26 K 
(optimal detuning) and 7 1  K. 

It can be seen from from Equation (3. 1 5) that fJ is a bias dependent quantity. 

Below threshold the differential efficiency is the product of the injection 

efficiency, the radiative efficiency ( 1'/, ), and the spontaneous emission coupling 

factor. The radiative efficiency of the measured lasers is limited by carrier 

diffusion out of the cavity. The carrier lifetime decreases as the photon number 

and stimulated recombination rate increase. At the lasing threshold the radiative 

efficiency changes abruptly to nearly one; the carrier l ifetime becomes so shon 

that the excited electrons do not have time to diffuse out of the active region. 

Since the threshold transition takes place over a smaIl change in carrier density 
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(for f3 < 0. 1 ) , P at threshold can be estimated by measuring the ratio of the 

differential efficiency immediately above and below the lasing threshold. 77, · f3 is 

one-half the change in the differential efficiency since l ight from two 

orthogonally polarized modes is collected below threshold whereas lasing occurs 

in a single polarization. 

Fig. 3 . 1 0  shows light versus bias current measurements for a cavity with a 9 

Ilm diameter post. 77, · f3 is 2(± I )  x 1 0-3 with optimal gain-cavity detuning (at a 

heatsink temperature of 1 26 K). Optimal detuning is determined by measuring 

the threshold current as a function of temperature (Fig. 3 . 1 2).  Optimal detuning 

occurs for the temperature at which the cavity mode is aligned to the peak of the 

gain spectrum. In Fig. 3. 1 1 light versus current measurements are shown for a 

cavity with a 3 Ilm diameter post. 77, ·f3 is 4(±1 ) x 10-3 at 1 26 K (also optimal 

gain-cavity coupling). In order to determine /3, the influence of carrier diffusion 

must be considered. 
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Fig. 3. 1 2. Measured threshold current versus heat-sink temperature for a 3-llm diameter device. 
The optimal detuning is realized at a temperature of 126 K. 

Extraction of Radiative Effticienc)' and Spontaneous Emission Factor 

The radiative efficiency is the fraction of the total injected current that 

supports the generation of light, I I 1] = ....!!!!!.. = ruJ 
r I lruJ + I"iff (3 . 19) 

I is the measured injection current and I ruJ is the current supporting the 

spontaneous and stimulated emisson of light. Equation (3. 1 9) assumes that 

diffusion is the only nonradiative carrier loss mechanism. As the device diameter 

becomes larger, 1]r � 1 and I � lruJ. The above experiments measure 77, -/3 at 

threshold. 71r at threshold is the ratio of the current needed to maintain the 
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threshold carrier density in the absence of diffusion to the measured threshold 

current. The threshold carrier density can be extracted from the measured 

differential efficiency and the estimated gain dependence on the carrier density. 

The current required to maintain this threshold density ( I rud ) can be approximated 

by using a model for the carrier losses in the absence of diffusion. i.e. the 

bimolecular recombination model. 

Using extracted optical losses and established gain curves (Corzine. 1 990) we 

obtain the threshold carrier density. The total optical losses ( 4 .. , )  versus device 

diameter ( d )  were extracted from the measured differential efficiencies ( 11J ) 

I,.. (d) = 1 �J1d) - I) . (3.20) 

T is the transmission calculated for a planar 1 6.5 period AlAs/GaAs mirror. 11, is 
again the injection efficiency which is typically a weak function of the device 

diameter. Figure 3. 1 3  shows the extracted optical losses along with a numerical 

fit (Thibeault. 1 995) 
�'" = L",. + LJCI1, = 0.74 + 

9 .�6 [%] . 
d- (3.2 1 ) 

Here 4. is the broad area round trip cavity loss and LJCI1' is the size dependent 

cavity loss. The total optical losses are 1 .6 % and 0.9 % for the 3 J.lm and 9 J.lm 

devices, respectively. These are in agreement with scattering losses for similar 

devices at room temperature. These optical losses can be attributed to the 

scattering at the perimeter of the etched post (Fig. 3 . 14) .  The chemical 

component of the etch used to define the post results in unequal etch rates for 

AlAs and GaAs. This etching results in a scalloped profile which efficiently 

scatters light out of the optical cavity. 
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Fig. 3 . 1 3  The estimated optical losses versus post diameter. The optical losses follow an inverse 
square law with the device diameter (shown as a dotted line). 

Fig. 3 . 14 A scanning electron micrograph of an etched post. The micrograph clearly shows 
roughness due to the different etch rates in GaAs and AlAs. 
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The threshold carrier densities can be estimated from the gain model 

described earlier; this gain model has been verified by low temperature 

measurements on conventional edge-emitting lasers (Hu, 1 995). The current 

required to maintain the threshold carrier density without diffusion is estimated 

using the established bimolecular recombination model and the extracted 

threshold carrier density. The radiative efficiency is the ratio of this estimated 

threshold current with the measured threshold current. Figure 3. 1 5  shows the 

radiative efficiencies for various device diameters. The estimated efficiencies are 

in  agreement with diffusion currents predicted by a self-consistent numerical 

model for this device structure (Thibeault, 1995). 
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Fig. 3. 1 5  The estimated radiative efficiency versus post diameter. The dotted line is intended 
only as a guide to the eye. 

The extracted fJ are 1 x 1 0-2 and 2.5 x 10-3 for the 3 Ilm and 9 J.Lm devices, 

respectively. Figure 3. 1 6  shows the measured values of fJ as well as the values 

predicted by Equation (3. 1 5) utilizing the estimated threshold carrier densities . 

The bimolecular recombination coefficient used in the model was independent of 

device diameter, i.e. microcavity effects are insignificant. The measured values 

appear to be in reasonable agreement with the predictions of Equation (3. 1 5). All 

of the parameters that appear in (3. 1 5) are required to model the threshold and 

differential efficiency of semiconductor lasers. The spontaneous emission factor 

is not a fitting parameter; the threshold carrier density and therefore fJ - from 

Equation (3. 1 5) - can be extracted from the measured threshold current and 

differential efficiency. 
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Figure 3 . 1 6, Calculated 13 incorporating measured values for optical losses and radiative 
efficiencies. Also shown are measured values of 13 for 3-llm and 9-llm diameter devices (filled 

squares) and the measured values of 17,13 (empty squares). 

3.5 Summary 

In conclusion. we have measured the spontaneous emission coupling factor in 

electrically-pumped post vertical cavity lasers, We have examined limitations to 

the enhancement of 13 in practical microcavities, Reducing the lateral dimensions 

of the optical cavity increases the frequency separation between neighboring 

optical modes and reduces the number of accessible optical modes within a given 

frequency bandwidth. This results in a decrease in the bimolecular recombination 

coefficient as the volume decreases. We find that even though the bimolecular 
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recombination coefficient may decrease with the cavity volume, the total 

spontaneous emission rate does not decrease. The small diameter lasers are 

strongly influenced by scattering losses in the etched post. The increased optical 

losses for smaller diameter devices require larger threshold carrier densities. The 

spontaneous emission spectrum broadens as the carrier density increases and the 

resulting number of accessible modes actually increases. Also, the larger carrier 

density increases the probability for an excited electron to find an empty valence 

band state into which it can relax. Both effects increase the total spontaneous 

emission rate and also the total amount of energy wasted by spontaneous emission 

into nonlasing optical modes. A second limitation to scaling the optical resonator 

is carrier losses due to surface recombination or diffusion. In the measured 

devices, we saw that the fraction of current contributing to radiative transitions 

decreases with the device dimensions. This reduction in the radiative efficiency 

frustrates the central goal of microcavity laser research which is to increase the 

below threshold efficiency of semiconductor lasers. 

Our analysis suggests that improvements to device geometry which reduce the 

threshold carrier densities will naturally increase the spontaneous emission 

coupling factor. In the immediate future, enhancement of the spontaneous 

emission factor in the new class of 'oxide hole' surface emitting lasers is expected 

(Choquette, 1 996). These devices realize extremely low threshold currents by 

successfully scaling the active region diameter to micron dimensions. These 

devices rely primarily on current confinement and not on optical confinement. As 

such they neither introduce significant optical losses nor do they alter the 

bimolecular recombination coefficient. Even without microcavity effects the low 
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threshold carrier densities translate into lower total spontaneous emission rates 

and higher spontaneous emission factors. 
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Chapter 4 
MICROCA VITY POLARITON LASERS 

4.1 Polariton Matter Lasers 

Excited electrons in a small enough optical cavity spontaneously emit light 

into a single optical mode. Photons generated by spontaneous emission into this 

single mode exhibit the directionality and spectral purity characteristic of laser 

light. Restricting the interaction of the excited electrons to only a single mode 

eliminates the usual tum-on associated with single mode emission resulting from 

laser action. The electrons in typical microcavity semiconductor lasers interact 

more strongly with other electrons at different momenta than with the optical 

mode - momentum scattering times are typically I ps (Wang, 1 995) and 

spontaneous emission times are 5 ns in GaAs. When the interaction between the 

electrons and the optical mode is sufficiently strong, the nature of spontaneous 

emission by the electrons changes drastically. In Chapter 2, we showed that the 

strong-coupling limit could be achieved by placing excitons in a small DBR 

microcavity. The system of coupled excitons and cavity photons is called a 
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polariton.  There are two polariton branches that represent the additive and 

subtractive superposition of exciton and photon states. Creating a polariton 

requires the simultaneous generation of an exciton and a photon that are coupled 

together. Destroying a polariton means destroying a coupled exciton and photon. 

Light emission from a strong-coupling microcavity, therefore, involves the 

annihilation of polaritons. The microcavity polariton laser, or boser, is a device 

that uses polaritons to generate coherent light. 

Coherent light emission from a conventional multi mode laser requires 

stimulated photon emission. Stimulated emission causes an excited electron to 

emit a duplicate of an existing, nearby photon; the rate of this stimulated emission 

is proportional to the number of nearby photons. In the microcavity polariton 

laser, photons exist only as constituents of polaritons. Stimulated emission of a 

polariton requires the relaxation rate into a polariton state to be enhanced by the 

presence of polaritons already in that state. In this section we explore this concept 

of final state stimulation. Section 4.2 presents a rate equation analysis for a 

simple polariton boser. Section 4.3 extends this discussion to the experimentally 

realizable case of nonresonant excitation. The dynamics of microcavity 

polaritons have been studied by both continuous-wave and time-resolved 

photoluminescence spectroscopy. The results of these experiments are 

summarized in Section 4.3 and 4.4. 

Bose Statistics 

The indistinguishability of bosons results in their propensity to collect in a 

single quantum state. Here, we have adapted Feynman's discussion (Feynman, 
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1 963) of scattering between bosons to the problem of polariton relaxation into a 

ground state. We first consider two polaritons - labeled ( I )  and (2) in Figure 4. 1 

- that are initially in different states, for example states of different momentum k 

and k'. Both polaritons relax into the same final state, O .  The probabil ity of 

polariton ( I ) at k scattering into the state with momentum 0 is la!�12 . The 

probability of polariton (2) at k' scattering into a state with momentum 0 is 

la!;t . The complementary scattering events can also happen where polariton ( I )  , , . 
is at k' ( la���I- ) and polariton (2) is at k ( la��T ). If the complementary 

relaxation pathways are distinguishable, then the probability of the two polaritons 

relaxing into the same ground state is la��a!;riI2 + la!�la!�� 12 . We can drop the 

labels since they have been assigned arbitrarily. The resulting probability for two 

distinguishable polaritons relaxing into the same ground state is 2Ia4oak.l. If the 

two polaritons are indistinguishable, then the probability of the two polaritons 

I . . 
h d 

. 1 ( I ) PI (2) C I ) 1 2 h' h ' 41 12 h h re axmg mto t e groun states IS akOak,,;O + akO an w IC IS a.oa.,o w en t e 

labels are dropped. The i ndistinguishability of the two polaritons actually 

enhances their probabil i ty of relaxing into the same ground state. This is final 

state stimulation. If we, instead, have three polaritons with initial momenta k ,  k' . 

and k" scattering into a single ground state, then there are six (3 !) ways that these 

three polaritons can be distributed into the three init ial states : 

The 

probability of three distinguishable polaritons relaxing into the same ground state 

is 3"a��a�7�a�:� 12 . The probability of three indistinguishable polaritons relaxing 

into the same ground state is 13!a!�a!;�a!:� 12 - the indistinguishability of the 

polaritons enhances thei r  relaxation probability by 3 ! .  There are n! ways that n 
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polaritons can be distributed into n initial states - an n !  enhancement in the 

relaxation rate. If we consider the particular case where n polaritons are already 

present, then adding one more polariton changes the relaxation rate enhancement 

from n !  to ( 1  + n)! . The probability of an additional polariton relaxing into the 

ground state is enhanced by a factor of 1 + n . 

Momentum Momentum 

Fig. 4. 1 The relaxation pathways for two polaritons with momenta k and k' that relax into the 
same ground state. These two pathways constructively interfere resulting in an enhancement in 
the relaxation rate known as final-state stimulation. 

This same final state stimulation is responsible for stimulated photon 

emission. Photon stimulated emission occurs only because photons are bosons. If 

photons were fermions, the Pauli exclusion principle would prevent more than a 

single photon from occupying a cavity mode; build-up of the photon number in 

the laser cavity would effectively prevent any further relaxation of excited 

electrons. The probability of a fermion, such as an electron or hole, relaxing into 

a state with n fermions already present is 1 - n . 
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The average occupancy (n) of a quantum state must be close to one to see 

either final-state stimulation or Pauli exclusion. The temperature of these 

particles describes their distribution between different energy states. A high 

temperature implies that the probability of finding a particle at a specific energy is 

relatively small - the particles are spread over a large range of energy ( ksT ). As 

the temperature decreases, the probability of occupying a specific, low energy 

state increases. The density of states describes the number of distinct states 

within a range of energies. A high temperature with a small density of states can 

translate into a large occupancy in each state. Likewise, a large density of states 

can prevent the occupancy of any given state from becoming large even at low 

temperatures. A useful measure of the density of states is the particle mass. 

Heavy mass particles have a large number of momentum states within a small 

energy range - the bands are relatively flat in E-k space. The thermal de Broglie 

wavelength describes the ratio of the density of states to the thermal energy 

spread (Lewenstein, 1994), �2 
A -

T - 3mksT
' (4. 1 ) 

and is a useful measure of the state occupancy. If the 2D particle density is 

smaller than K2 then neither final state stimulation (for bosons) or Paul i  

exclusion (for fermions) is observable. 

4.2 Resonant Polariton Laser 

The microcavity polariton laser that we consider in this chapter uses final­

state stimulation, as a laser uses photon stimulated emission, to 'place' polaritons 
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in a single quantum state. As a starting point, we consider the near-resonant 

generation of polaritons in the lower polariton branch. Figure 4.2 shows a 

schematic illustrating the relevant scattering processes in a polariton laser. Light 

from a pump laser generates excited polaritons. These polaritons relax by 

emitting acoustic phonons (lattice vibrations) to populate the k = 0 lower 

polariton state (Tassone, 1 996). It is this phonon emission rate into the polariton 

ground state that is enhanced by final-state stimulation. 

dNr•a ( )( - ) ( ) - Nt." dr = KpnNr.4 1 + Nt.a 1 + Npn - Kp"Nt." 1 + Nt.t Npn - -:;-
(4.2) 

where 

Kpn (1 + Npn) = :�:J8J ( 1 + Npn.,, )  O(ClJk - ClJo -clq/) " (4.3) 

for lower branch polaritons with center-of-mass momentum k and energy hClJk • 

phonon modes q with phonon energy nclql .  8" is the coupling constant of the 

polaritons to the phonon modes q . l' represents spontaneous annihilation of 

ground state polaritons. At exact resonance between the constituent cavity mode 

and exciton, the polariton lifetime is (Abram, 1 996) 
1 I 1 
- = - + -. 
l' 1'p 1'sp 

(4.4) 

The first term in the (4.2) represents an exponential growth of the ground state 

polariton population (gain), the second term represents an exponential reduction 

of the ground state population (loss) and the last term is a l inear increase in  

ground state population that is  analogous to  spontaneous emission. Similar 

models have neglected either the l inear term or finite phonon occupancies 
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(Tikhodeev, 1 990 and Yura. 1 994); the inclusion of these effects has important 

implications for condensate formation in the polariton boser. 

upper polariton 
'\ vhoton dispersion 

y 
phonon scatter�: 

p:-; c,tcn  
gen>:ration 

optic� 1  

momentum 
--... 

exciton dispersion / 

vacuum 

Fig. 4.2. Schematic of the energy flow in a ·resonant' polariton laser. 

Polaritons with excess in-plane, center-of-mass momentum are generated 

by an optical pump beam. These polaritons relax by acoustic phonon emission 

into the polariton ground state. The ground state polaritons annhiIate into photons 

This polariton boser is analogous to an optical laser where the relevant 

electronic states are fermionic (electronlhole) instead of bosonic (polariton). 

Relaxation of electrons from the conduction band to the valence band in a 

conventional laser is described by 
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(4.5) 

Comparison of Eq. (4.2) and (4.5) demonstrates the analogy between the polariton 

matter laser and a conventional semiconductor laser. The polariton ground state 

population is the analog of the photon number in an optical laser. Final-state 

stimulated relaxation of polaritons into the ground state is the analog of stimulated 

photon emission. Spontaneous annihilation of the ground state polaritons is 

analogous to photon loss from the optical resonator. 

Equation (4.2) indicates an exponential growth in polariton number when 

NI./r. > Nph - this is the inversion condition for the polariton laser. This inversion 

condition arises from the need for entropy to increase as energy is stored in the 

form of coherent polaritons. Non-resonant generation of polaritons increases 

both the energy and the entropy of the polariton system. In the limit of a high 

temperature optical source, the entropy produced by the optical pumping is 

!lS = li(j)p�mp/r"lImp = ks/ Nt.. . The relaxation of the high-momentum polaritons 

to the ground state reduces the entropy by !lS = fzruph/Tph = ks/ Nph • 

Thermodynamic inversion occurs when all of the entropy added to the system by 

pumping is removed by phonons Nt." = Nph • At pump l evels higher than 

inversion, coherent energy can be extracted from the pump reservoir. We see that 

the polariton laser, like the optical laser, is essentially a heat engine that does 

work by virtue of heat exchange between the optical pump and the phonon 

reservoirs. 
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As is the case with a conventional laser, inversion is not sufficient for the 

generation of a coherent state in the polariton laser. As we saw in Chapter 3, a 

well-defined laser threshold must be accompanied by an abrupt change in the 

differential efficiency as the pump increases above threshold. A small below 

threshold differential efficiency requires competing dissipation channels (Klu .. ). 

These competing loss channels ensure that the pump is depleted immediately 

above threshold and that there is a well defined discontinuity in the rate of 

condensate fonnation above and below threshold. This condition is equivalent to 

the requirement for a small spontaneous emission factor to observe threshold in a 

conventional semiconductor laser. The effective {J for the polariton laser is the 

simply R = K jK . The dominant loss tenn for the resonant polariton laser is � ph h,ss 

loss of high-momentum polaritons due to spontaneous recombination of the 

constituent excitons or from the escape of constituent photons out of the 

microcavity. Figure 4.3 shows the polariton number in the ground state versus the 

pump rate of excited polaritons for various f3 . 
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Pump (arb. units) 
Fig. 4.3. The number of ground state polaritons versus the number of optically generated 
polaritons for various p. 

In this limit of the polariton laser system, an ordered state is realized when 

annihilation of polaritons from the ground state (loss) is completely balanced by 

final state stimulated relaxation into the ground state (gain)  -

Kph ( N1•k - Nph ) = : . (4.6) 

As with the conventional laser, this 'gain equals loss' threshold condition strictly 

applies only as f3 � O .  In the polariton laser with a finite p, the net gain 

asymptotically approaches the total loss. Equation (4.6) overestimates the excited 

polariton number at the measured threshold. 
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4.3 Non-resonant Polariton Laser 

Now that we have established the inversion and threshold condition for the 

simple case where only polaritons in the low energy branch are excited, we can 

consider the e xperimental ly relevant case of nonresonant  pumping.  

Experimentally we will be exciting polaritons with a short 1 50 fs laser pulse. A 

short optical pulse allows us to obtain time-resolved spectra and avoids the 

problem of heating associated with intense continuous-wave pumping. The broad 

spectral width of such a short pulse means that both polaritons and free electron­

hole pairs are generated for resonant pumping; the spectral width is as large as the 

exciton binding energy 10 meV. In order to eliminate the uncertainty in the type 

of carrier generated, the pump light is tuned to the electron-hole resonance. This 

ensures that the pump primarily excites free electron -hole pairs. 

Polariton Dynamics 

Figure 4.4 illustrates the energy flow through a nonresonantly pumped 

polariton laser. The light from the pump laser generates free electron and holes in 

a quantum well. These electron-hole pairs subsequently form excitons with large 

center-of-mass momenta. There are three distinct regions of momentum space 

over which exciton/polariton states are distributed (Figure 4.4). Exciton states are 

distributed across the Brillouin zone from -TrIa to +Trla, where a is the crystal 

lattice constant. When the constituent exciton's  in-plane, center-of-mass 

momentum k is larger than the total photon momentum, 
k 2nn 

> -­;top, , (4.7) 
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a photon cannot carry away the exciton 's momentum. These excitons do not 

recombine and radiate light. Since the optical wavelength is typically 500 times 

larger than the lattice constant only a sma]) fraction of the exciton states - near the 

zone center - couple to light. The initia])y excited excitons lose their energy to 

the crystal lattice as phonons (or lattice vibrations). When the exciton momentum 

is sufficiently small, where Eq.(4.7) is satisfied, they also lose energy by radiating 

light. Of these few exciton states that radiate, only about ten percent are able to 

form polaritons. The remaining excitons spontaneously emit l ight into the 

passband of the DBR microcavity (Tassone, 1 996). The excitons cool towards the 

zone center and eventually into the two polariton branches. These excited 

polaritons relax into the polariton ground state (k=O) by acoustic phonon 

emission. The entire process from free electron-hole generation to relaxation into 

the polariton ground state requires the dissipation of approximately 1 2  meV into 

the crystal lattice; more than one hundred individual acoustic phonon emission 

events. 
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Fig. 4.4 Schematic of the energy flow in a nonresonant polariton laser: a) free electron-hole pairs 
are generated by an optical pump beam. (b) the free carriers elastically scatter and form excitons 
with excess in-plane. center-of-mass momentum. (c) the excitons relax by acoustic phonon 
emission to (d) eventually populate both polariton branches. and (e) the polaritons anhhilate into 
photons. 

Photoluminescence Spectroscopy 

In Chapter 2, a system of microcavity polaritons was characterized by 

continuous-wave spectroscopy and reflection measurements (Goobar, 1 996). This 

sample, grown using molecular beam epitaxy by Jack Ko at UCSB, is also used 

for the polariton laser experiments discussed below. A scanning electron 

micrograph of the grown wafer is shown in Figure 4.5. The cavity consists of a 

top mirror with 1 5  Alo.l 1 Gao.89As/AIAs periods, a Alo.3Gao.7As cavity of 

thickness L c = A. and a bottom mirror with 20.5 AlO.I I  Gao.89AsI AlAs periods. A 

single GaAs quantum well (QW) of thickness L QW = 1 50 A is placed at the center 
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of the cavity which has its resonance aligned to the heavy-hole exciton absorption 

line at around 1 0 K. The polariton splitting at minimum detu!ling between the 

cavity resonance and exciton transition is 3.7 meV. 

DBR 
(15 x AJO•1 , GaO•sgAs/AJAs) 

OW ( 150 A GaAs) 

DBR 
(20.5 x Ala." Gaa.agAs/AIAs) 

Fig. 4.5 A SEM micrograph of a microcavity sample with a one wavelength optical resonator and 
high reflectivity distributed Bragg reflectors. The quantum well and cavity are designed for 
optimal exciton-photon coupling at 10 K. 

The microcavity sample was mounted on the cold-finger of an Oxford model 

CFI 1 04 l iquid He flow cryostat (Fig. 4.6). The excitation pulses were generated 

by a Coherent Mira mode-locked Ti:AI203 laser. with a pulsewidth of 1 50 fs and 

a repetition rate of 82 MHz. A continuously variable neutral density filter was 

used to vary pump power without affecting pulsewidth. The excitation pulses 

were focused onto the microcavity sample at an incident angle of - 10° and an 

approximate spot size of 1 00J.Lm. The photoluminescence was collimated and 

sent through a SPEX 0.5 meter, single grating spectrometer. For time-integrated 
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measurements, this spectrally filtered light was collected by a Hamamatsu GaAs 

photomultiplier tube. 

Grating 
spectrometer 

��!JI:i;i5I""'_����� 
, 

� 

Cryostat (1 0K) 

�-� '-D 
Streak camera 

or 
Photomulitplier tube 

Ti: A�03 laser 

82 MHz repetition rate 
1 50 fs pulse width 
803 nm 

Fig. 4 .6 The measurement set-up for time-integrated and time-resolved spectroscopy of 
polaritons. The sample is pumped with a mode-locked Ti:AIl03 laser and the photoluminescence 
is collected either by a GaAs photomultiplier or a streak camera. 

A typical photoluminescence spectrum for a time-averaged pump power of 30 

mW is  shown in Figure 4.7. Luminescence from both polariton branches is 

clearly resolved. The same polariton splitting is observed for these time­

integrated measurements as for the continuous-wave pump measurements of 

Chapter 2. S ince the pump pulse is filtered by the microcavity which surrounds 

the quantum well, the density of excited carriers cannot be directly estimated. We 

cannot estimate the fraction of the pump absorbed at the quantum well  since 
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neither the reflected pulse nor the transmitted pump pulse can be monitored. In 

order to estimate the carrier density, we analyze the shift of the polariton 

transition with incident power and use a many-body model to estimate the exciton 

density required to generate such a shift. This technique is presented in detail in  

Section 4.4. The polaritons are not equally distributed between the two branches. 

The low energy branch is more heavily populated. The relative luminescence 

intensities can be modeled by a Boltzman distribution (Stanley, 1 996) .  The 

assumption of thermal equilibrium between the two polariton branches seems 

plausible given the number of phonon scattering events required for the generated 

free electron-hole pairs to relax into the polariton states. 

3.0 10J r----t""-__ -...--...--...----t""-____ ----. 

2.5 10J 

1 .0 1oJ 

5.0 1()2 

O.  0 L-. ..... ...c=:c::::;;...,..._"----'-_.L...-.....&..� ...... _... --.J 
8070 8080 8090 8 1 00 8 1 1 0  8 1 20 

Wavelength (A) 

Fig. 4.7 Photoluminescence spectrum at a time-integrated pump power of 30 mW. 
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As the pump power increases, the relative photoluminescence intensities can 

no longer be described by an equilibrium Boltzman distribution. The distribution 

of polaritons between the two branches exhibits a strong dependence on the pump 

intensity. Figure 4.8a show the time-integrated photoluminescence spectra as a 

function of pump power. Beyond a pump level of 40 mW, the luminescence from 

the lower polariton clamps whereas the luminescence from the upper polariton 

increases rapidly. A distinct laser-l ike threshold for the upper polariton is visible . 

Clearly, the polariton distribution between these two branches is not described by 

a Boltzman distribution. Figure 4.8b shows the peak intensity versus pump 

power for the polariton transitions. The rapid increase in the slope efficiency of 

the upper polariton is suggestive of some son of laser action. 

3.2 1 0" 

E 2.4 1 0" 
� 
o 

U 1 .6 1 0" 

8.0 1 rfJ  

0 . 0  L---I-.............. :;;;.;I::iii 
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( b )  
Fig. 4 .8 (a) Photoluminescence spectra at various optical pump powers. (b) Peak 
photoluminescence intensity in the upper (open circles) and lower{ciosed circles) polariton 
branches. 

Time-resolved measurements were made by collecting the output of the 

spectrometer with a Hamamatsu streak camera. The streak camera was triggered 

by a slow detector within the Mira laser. Triggering the streak camera with the 

excitation pulse eliminated the effects of long-time jitter inherent to the Mira. 

The temporal resolution of these measurements was limited by chirp introduced 

by the spectrometer and by residual jitter in the mode-locked laser. The 

resolution was estimated by sampling the 1 50 fs excitation pulse with the streak 

camera - the measured resolution was 60 ps. 

Figure 4.9 shows the time-resolved photoluminescence for the upper polariton 

line and an exponential fit at a time-averaged pump power of 30 mW. The time­

dependence of the luminescence can be approximated as a single decaying 
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exponential - this single exponential describes the data over two decades of 

intensity. The extracted decay time is 1 70 ps. The peak of the luminescence 

occurs approximately 300 ps after the excitation pules. Both the long rise- and 

decay-time reflect the large number of acoustic phonon emission events required 

to relax the excited excitons into the polariton states. The measured times are in 

agreement with previously published relaxation times for bare excitons 

(Eccleston, 199 1 ). 
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Fig. 4.9 Time-resolved photoluminescence intensity versus time for the upper polariton branch at 
an optical pump power of 30 m W. 

The time-resolved measurements indicate an increase in the decay rate that is 

coincident with the change in the measured slope efficiency. Figure 4. 1 0  shows 
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the time-resolved photoluminescence from the upper polariton versus pump 

power. The decay rate increases when the pump power is greater than 40 mW ­

this is the threshold pump power observed in Figure 4.8 . Figure 4. 1 1  shows the 

luminescence intensity versus time for a pump power of 60mW. The 

luminescence decay can no longer be described by a single exponential. The 

decay rate is observed to decrease as the intensity decreases, i.e. as the polariton 

density decreases. The fast initial decay is approximately 95ps and the slow 

decay is approximately 1 65ps. At long times, the relaxation rate returns to the 

value below threshold. The data clearly describe an enhanced relaxation rate as 

the polariton density increases . Both the observed threshold behavior and the 

enhanced relaxation rate are consistent with the polariton laser described in this 

chapter. 
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Fig. 4. 1 0  Time-resolved photoluminescence at various optical pump powers from the upper 
polariton. 
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Fig. 4. 1 1  Time-resolved photoluminescence intensity versus time for the upper polariton branch 
at an optical pump power of 60 m W. 

The luminescence from the lower polariton branch, however, exhibits no 

dependence on the pump power. From Figure 4. 1 2, we see that the time 

dependence of the luminescence is completely independent of the polariton 

density. The luminescence decay cannot be described by a single exponentiaL 

The decay rate appears to increase with time independent of the polariton density. 

There is no evidence for any sort of final state stimulation for this polariton brach. 
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Fig. 4. 1 2  Time-resolved photoluminescence at various optical pump powers from the lower 
polariton. 

4.4 High-Density Polaritons 

While final-state stimulation of polaritons is the hoped for explanation for the 

observed threshold there are several causes for concern. The shift in the energy of 

the luminescence peaks with pump power is an indication that the density of 

polaritons is high. A high particle density can frustrate final-state stimulated 

relaxation of polaritons. Polaritons consist of photons, electrons and holes, where 

the latter two are bound together as excitons. At high polariton densities, the 

constituent electrons and holes in neighboring polaritons interact with each other. 

Pauli exclusion between neighboring electrons and holes limits the growth of the 
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polariton density. The constituent exciton density saturates at approximately 

(Schmitt-Rink, 1985) 
1 nSIIl = -4 2 '  

1raS 
(4.8) 

where as is the bare exciton Bohr radius. This interaction between constituent 

fermions effectively saturates the 'gain' in the polariton laser. This process is 

similar to spatial holebuming where the growth in the photon number saturates 

the net optical gain. 

The saturation of exci ton density also reduces the interaction between the 

constituent excitons and photons. The coherent absorption and reemission of 

photons that is responsible for polariton formation cannot occur if the exciton 

states saturate or become 'full.' The polariton splitting decreases as the polariton 

density increases (Houdre, 1995) 
0 = °n=O ..JI + n/nS4Jf 

(4.9) 

Figure 4. 1 3  shows the peak of the polariton luminescence versus position for 

two pump powers - the cavity resonance varies with the position as described in 

Chapter 2. There is a dramatic reduction in the splitting observed at a time-

averaged pump power of 2.7 mW and 50 mW; the measured splittings are 3.8 
meV and 0.7 meV, respectively. Using Equation (4.9) and the measured splittings 

gives an estimated polariton/exciton density of n = 30 nS/llat 50 mW. At this 

density there is significant overlap between neighboring excitons. Since the 

measured splitting is the same size as the measured luminescence linewidth the 

polariton picture is no longer valid. Recent measurements by H. Wang, et al. 

have recently confirmed the observed collapse of the polariton line that is 
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coincident with 'lasing' (Wang, 1 996). These measurements monitored the 

reflectivity of a probe pulse that had a variable delay relative to the pump pulse. 

At densities corresponding to 'lasing' the avoided crossing was no longer 

observable by probe reflection. Both measurements indicate that polaritons do 

not survive at the observed threshold densities. 
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Fig. 4. 1 3  The peak photoluminescence intensity from the upper and lower polariton branches at 
various positions on the wafer. 

At high densities, the dynamics of polaritons and excitons is not well 

understood. Equation (4.9) is  not valid at densities as high as n = 30 nJIII ' This is, 

however, our best tool for establishing an approximate exciton density. Equation 

(4.9) does not incorporate bandgap renormalization which occurs as the carrier 
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density increases. The free electron-hole levels change as the large c arrier 

populations screen the crystal lattice potential . Since the excitons are neutral 

particles their energy levels are not strongly effected by the increase in total 

carrier density. This screening leads to a reduction in the bandgap that is referred 

to as bandgap renormalization (Haug, 1 994). When the bandgap has narrowed by 

the exciton binding energy, the exciton energies and the free electron-hole 

energies are equal . At this point, no energy is required to ionize an exciton. The 

resulting carrier population consists only of free electron-hole pairs. These free 

electron-hole pairs are able provide optical gain and can supply energy for a 

conventional optical l aser. Future work on the pol ariton laser system must 

explore this transition from the polariton laser to the optical laser that occurs at 

high density. As of yet, the existence of such a transition in the experiments 

presented above is indeterminate. 

4.5 Summary 

In this chapter, we have extended the conventional theory of lasers to massive 

bosons .  In a conventional laser, stimulated light emission establishes a coherent 

photon population in the optical cavity. These coherent photons leak out of the 

cavity and appear as propagating light. This light maintains the coherence and 

spectral purity of the intracavity photons. In the polariton laser or boser, the 

coherence is established within a population of massive polaritons. These cavity 

polaritons eventuall y  annihilate and emit a photon which propagates outside the 

cavity. Again, the emitted l ight maintains the coherence properties of the 

intracavity polaritons. The inversion and threshold conditions for the polariton 
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laser are in direct analogy with the optical laser. A similar output behavior is 

predicted for the polariton laser and the conventional optical laser. 

Experimentaily, the system of microcavity polaritons exhibits a threshold that 

is consistent with the theory of the polariton laser. Unfortunately, the densities 

required to achieve threshold in this laser system make the interpretation of the 

experimental data difficult. The most important difference between photons and 

massive polaritons is that photons are nearly ideal bosons and polaritons are 

constituent bosons constructed from fermions. The interactions of the constituent 

fermions in massive bosons l imits the build-up of large populations. In the 

experiments, the loss rate (Sps) most likely was so high that the weak acoustic 

phonon relaxation processes could not maintain large steady-state populations in 

the ground state. As a result, the threshold population density was sufficiently 

large that the constituent electron-hole interactions drastical ly altered the 

polariton system. Not only did the polariton branches collapse, but the constituent 

excitons may have ionized. In this limit, conventional photon stimulated emission 

could be responsible for the observed threshold. This interpretation is not entirely 

consistent with the observation of two emission lines, but the dynamics of 

excitons/polaritons at these high densities has still to be explored in detail. 

The interactions between the constituent fermions inside the polariton can 

frustrate final state stimulation. Photons are intrinsically robust bosons. They are 

able to survive collisions with other particles remarkably well .  In addition, the 

typically weak interactions between photons allows the build-up of very large 

photon numbers. While the underlying interactions - final state stimulation 

resulting from the indistinguishability of bosons - provides gain for both the boser 
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and the laser, it is the photon's  robust nature that allows a laser to be realized so 

easily. 

• 
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Chapter 5 
COHERENT MATTER AND LIGHT 

5.1 Summary 

We have attempted to improve the efficiency of semiconductor lasers by 

reducing the number of radiative pathways for spontaneous emission. The total 

spontaneous emission rate decreases as the number of accessible modes 

decreases. The removal of all but the single lasing mode from the optical cavity 

eliminates a significant fraction of the energy wasted in a conventional 

semiconductor laser. Microcavity lasers offer the benefits of lower threshold 

currents and higher below-threshold efficiencies. In Chapter 2, we discussed 

serious limitations to our ability to reduce the spontaneous emission rate for free 

electron-hole pairs. Electron-hole pairs typically radiated in all directions. A 

semiconductor microcavity constructed with DBRs only provides optical 

confinement for a few degrees so that the electron-hole recombination rate is only 

weakly altered by the cavity. The weak optical confinement arises from both the 

large penetration depth - which makes the cavity seem large - and the passband 

emission. We need to engineer a system where the deficiencies of the DBR 

resonator can be mitigated. The two approaches that we have considered are: ( 1 )  

to use a narrow post resonator which would provide transverse optical 
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confinement and thereby confine the spontaneous emission to a small angular 

spectrum and (2) to inhibit scattering between neighboring momentum states, 

which couple to light in different directions, by using a strong-coupling induced 

energy shift. 

Chapter 3 investigated the benefits of true single mode lasers and explored the 

limitations to achieving such lasers with free electron-hole pairs in small diameter 

optical cavities. A cavity with a small etched-post resonator was used to provide 

strong transverse confinement. The small transverse cavity alleviates the 

problems associated with a large DBR penetration depth and passband emission 

but introduces optical scattering losses and carrier diffusion. Increased optical 

losses require larger threshold carrier densities. These high density electrons are 

distributed over a large range of kinetic energies and subsequently radiate a 

broader spontaneous emission spectra. The broad frequency distribution of the 

participating electronic transitions makes the demands on the optical cavity even 

more severe. In addition, carrier diffusion (or surface recombination) of excited 

electrons out of the narrow post resonator nullifies the advantages of a high fJ 
structure; increasing the fraction of electrons emitting photons in the desired 

optical modes cannot result in high efficiencies if we are unable to efficiently 

deliver excited electrons to the active region. Engineering the optical resonator 

offers only limited control of the spontaneous emission processes of the electron­

hole pairs. 

Additional control can be realized by exploiting strong-coupling i nduced 

energy shifts. The coupling of a dipole oscillator to an optical mode shifts the 

resonant energy of the dipole oscillator. The magnitude of the shift is 
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proportional to the coupling strength between the dipole and the cavity mode. 

This energy shift is a function of the detuning between the bare dipole and cavity 

resonances. Since the transition energy is dependent on the carrier momentum, 

neighboring momentum states experience different strong-coupling energy shifts. 

For sufficiently large dipole-cavity coupling it is possible to isolate neighboring 

momentum states. Suppression of scattering between neighboring momentum 

states effectively prevents carriers from probing the microcavity response at 

different angles. These ' isolated' carriers see only the high reflectivities 

associated with reflection at resonance from the DBR. Such 'momentum space 

engineering ' is effective only when the coupling induced energy shift is 

sufficiently strong. This is the case for excitons where the large electron-hole 

overlap - due to Coulomb interactions - increases their coupling strength to the 

electromagnetic field. The coupling is large enough to stabilize the polariton 

states that are the 'true' eigenenergy states for the dipole-cavity (exciton/photon) 

system. In Chapter 2 we saw that indeed single mode coupling could be realized. 

S ingle mode operation without stimulated emission therefore requires the 

'momentum space engineering' embodied by polaritons. Unfortunately, the 

bosonic nature of the excitons and polaritons does not allow for conventional 

optical gain. A system of ideal bosons cannot be used to provide gain in a 

conventional optical laser. In Chapter 4, we proposed a polariton boser which is a 

device that generates coherent light by first generating coherence in massive 

polaritons. The theoretical analysis shows that the polariton boser is not the high 

efficiency source for which we are looking. The effective f3 in a nonresonantly 

pumped polariton boser can be very low, so that thresholdless lasing behavior is 



1 1 8 
not realized in the boser. Energy in the boser is wasted because of spontaneous 

annihilation of excitons and polaritons in high momentum states. Even though 

single mode emission is realized. the polariton boser and the microcavity laser 

still face serious challenges on the road to realizing truly high efficiency and low 

threshold. 

5.2 The Future Development of the Boser 

The polariton boser and the microcavity laser both generate coherent light by 

anaiogous processes in similar structures. The similarity makes differentiating 

between laser and boser action nontrivial. This is the issue that future research 

must address. In the experiments presented here. the problem has been that the 

threshold density is too high for us to have a system of noninteracting bosons. At 

sufficiently high densities final-state stimulation saturates and the constituent 

excitons ionize into free electron-hole pairs. The two directions for future 

research are to characterize the boser-laser transition in detail and to lower the 

necessary threshold density for a polariton boser. 

Laser to Boser Transition 

Polaritons are composite bosons constructed from superpositions of electron. 

hole and photon states. At low density. the polaritons can be treated as weakly 

interacting bosons. As such, they are expected to exhibit final-state stimulated 

relaxation that provides the 'gain' for the polariton laser. Since polaritons are 

composite particles, their treatment as bosons is always approximate. The 

constituent electrons and hole interactions cannot be neglected at high polariton 
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density. In the experiments presented in Chapter 4, an approximate density was 

calculated from the measured shift in the time-integrated lurnir.�·scence peaks with 

the pump power. A more accurate implementation of this technique would be to 

monitor the movement of the polariton peaks as the luminescence intensity 

decays. We expect to see a recovery of the polariton avoided crossing as the 

exciton density decreases. Such a time-resolved measurement would a])ow us to 

continuously monitor the particle density and to carefu])y examine the transitioll 

from polariton to exciton and possibly to electron-hole luminescence. After our 

experimental results, several groups have indeed begun preliminary investigation 

of such time-resolved PL spectra. Recently, H. Wang has performed pump-probe 

spectroscopy of a similar microcavity sample and confirmed the co])apse in 

polariton splitting at threshold that we observe (Wang, 1 996). 

In addition to careful1y monitoring the excitOn/polariton density, we can 

monitor the total free carrier density by performing pump-probe spectroscopy on 

the free electron-hole bandedge absorption. Monitoring the energy of the 

band edge absorption would enable us measure the bandgap renormalization and 

hence the free carrier density. This would allow a direct confirmation that the 

threshold density in the polariton boser is below the Mott density. If this is the 

case, the gain mechanism is not expected to be photon stimulated emission 

(conventional gain) since there is no population inversion below the Mott density 

(lmamoglu, 1996). 
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Reducing PoLariton Laser Threshold 

While accurate determination of the particle density is necessary, our 

preliminary estimates have indicated that the threshold polariton density for boser 

threshold is high. The threshold density can be lowered by reducing the loss rate 

of polaritons from the condensate state and by increasing the effective f3 of the 

polariton boser. 

The polariton loss rate is  the mean of the constituent exciton spontaneous 

emission rate and the photon lifetime in the microcavity. The short cavity lengths 

in microcavity structures result in a short time between successive mirror bounces 

and a subsequently short photon l ifetime. The estimated photon lifetime in our 

microcavity structure is approximate 5ps, whereas the exciton lifetime is 20ps. 

Increasing the mirror reflectivity and the photon lifetime can reduce the threshold 

density by almost a factor of four. The easiest way to increase the mirror 

reflectivity is to increase the refractive index discontinuity between successive 

layers within the OBRs. A simple way to achieve this is by selective thermal 

oxidation of the AlAs layers. The resulting oxide is a nearly lossless dielectric 

with a refractive index of approximately n= 1 .5 compared to an AlAs refractive 

index of n =2.98 . 

In addition to reducing the condensate loss rate, we can improve the efficiency 

at which we are supplying excitonslpolaritons to the condensate. Large effective 

f3s in the polariton boser can be realized using near-resonant instead of 

nonresonant pumping. Near resonant pumping eliminates the long journey the 

carriers must make on their way from the free electron-hole pairs to ground state 

polaritons. Since a large fraction of the generated carriers are lost either by 
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exciton emission into the passband or by polariton emission into various 

directions, the total density of carriers generated by optical pumping is much 

larger than that needed to support a coherent polariton condensate. Resonant 

pumping of polaritons requires picosecond, not femtosecond, mode-locked lasers. 

These lasers have a sufficiently narrow spectral width so as to excite polaritons in 

only one branch; no free electron-hole pairs or excitons are generated. This 

increased f3 will lower the threshold pump power and help us reach the eventual 

goal of high efficiency, coherent optical sources. 

5.3 Lasers are Bosers 

The polariton boser that we have proposed is , in many ways, a generalization 

of the optical laser. Fundamentally a laser relies on the nonequilibrium 

condensation of photons into a single optical mode. The indistinguishability of 

photons is solely responsible for stimulated emission. This is true for all bosons. 

The essential difference between photons and other bosons is that massive bosons 

directly interact with each other. This makes maintaining coherent populations at 

sufficiently high densities very difficult. Optical coherence is a great deal more 

robust. Since photons do not directly interact with one another they are able to 

collect in large numbers even when the wavelength of light is small compared to 

the confining volume. While the boser and laser both rely on the same underlying 

physics the laser was realized first since photons are a clean, nearly ideal Bose 

particle. 
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