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The emission mechanisms of strainegGa, N quantum wells(QWs) were shown to vary
depending on the well thicknesk, andx. The absorption edge was modulated by the quantum
confined Stark effect and quantum confined Franz-Keldysh eftgCEK) for the wells, in which,

for the first approximation, the product of the piezoelectric fi€ld;, andL exceed the valence
band discontinuityAE,, . In this case, holes are confined in the triangular potential well formed at
one side of the well producing the apparent Stokes-like shift. Under the conditiorr thatL
exceeds the conduction band discontindify- , the electron-hole pair is confined at opposite sides
of the well. The QCFK further modulated the emission energy for the wellslwgteater than the
three dimensional free exciton Bohr radis. On the other hand, effective in-plane localization of
carriers in quantum disk size potential minima, which are produced by nonrandom alloy
compositional fluctuation enhanced by the large bowing parameteF gndproduces a confined
electron-hole pair whose wave functions are still overlap@pentized excitonsprovided thatl

<ag. © 1998 American Institute of PhysidsS0003-695(98)02040-3

Major developments of IlI-nitride semiconductbfs The samples were prepared by metalorganic chemical
have led to the commercial production of InGaN singlevapor deposition. A series of MQWSs with 14 periods of un-
quantum well(SQW) light-emitting diodes(LEDs)* and to  doped Ip ;Gay N wells (L was varied from 1.2 to 6 njrand
the demonstration of multiquantum wéMQW) blue laser ~ 4.3-nm-thick Si-doped (2 10'® cm~3) GaN barriers capped
diodes (LDs).1® Although they~2 contain InGaN in active by 100-nm-thick A} ,Gay N was grown on 2um-thick
regions, the emission mechanisms are not fully understood3aN:Si_on (000) sapphire. Low excitation(less than
Several groups have assigned the spontaneous emission frdmyv/cn?) photoluminescence excitati¢RLE) and PL spec-
InGaN quantum well§QWS) to the recombination of exci- tra were taken using monochromatic light from a 80 W Xe
tons localized at certain potential minift4-8 On the other lamp. High excitation(nearly 500 W/crf) PL and TR-PL
hand, several groups have discussed the importance of th¢ere excited by a frequency-tripled 150 fs pulse from a tun-
quantum confined Stark effe(@CSB’ due to the piezoelec- able Ti:sapphire laser operating at an 80 MHz repetition rate.
tric field (Fpy) in strained wurtzite InGaN QW&8-10n All measurements were carried out betwee K and room
order to obtain an insight into what dominates the emissiof€mMperaturéRT). _ _
properties for further optimization of InGaN MQW LDs, it is Since the critical thickness of 4nGa N is reported to

necessary to investigate the effects of the effective band gdff dreater than 40 _nF”B’ we assume coherent growth of
inhomogeneity*-6 and the piezoelectric field:8°11con- InGaN. This strain will caus€ pz along the growth direction

sistently in wurtzite InGaN0001).2*°8-10n the other hand, 3D GaN
In this letter, complementary absorption and static/time SXNioits FE emissiolf at RT since the exciton binding en-

resolved (TR) photoluminescencéPL) spectra of InGaN erg){ff}f 'S as large as 26 meV ara is as small as .3'4

MQW’s are shown as a function of the well thickne&s m. Thus the problem treated here 1S the behE.iVIO.I’ of
While strongFp; exist in the QWs, effective in-plane local- ‘;"{‘fgf}%d energy states in QWs under high electric field,
ization of quantized excitons play an important role for the °
QWs with L smaller than the three dimension@D) free

exciton (FE) Bohr radiusag .

In QWSs, exciton absorption can be observed even at
RT"'®due to confinement of wave functions of electron-hole
(e-h) pair to increasé,,.*® Miller et al.” observed an exci-
tonic absorption in GaAs QWs, which was redshifted by 2.5
dCorresponding author. Elgctronic‘mail:‘ chichibu@enginet_ering.ucs_b.edt_)times the zero-field,, for F= 10° V/cm (50 times the ion-
T e e weaEaton feF. of 3D excions, and explaine he findings i
chichibu@ee.noda.sut.ac.jp terms of field modulation of quantized energy levels

YElectronic mail: denbaars@engineering.ucsb.edu (QCSB.” We estimatetf E,, in GaN/Al, ;Ga, N QWs un-
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FIG. 1. Schematic band diagrams of GaN/InGaN QWs under the electrid the barrier by Va”atlonal m_ethOd ”egk?a”ﬁgzx Wlthl_n

field F. Hartree approximation by solving the Sctieger equation
and Poisson equation simultaneously self-consistéftlye

fit the relation between the low excitation PL peak energy
andL (L<3.6 nm) in Fig. 3. As a result, the zero-field band
: ] . gap of the 3D InGaN is obtained to be 2.92 eV dxid. and

i Tsklr:jg éhe 1":. rel_?tmn bEetweedn At?ze va_letnce and cgg]ducA Ey are estimated to be 380 and 120 meV, respectiely.

|orr]1 ar;. b'scgr:j.mu' les fVI aC? N/GCZ\I 'n\?v accmgn ' estimated to be nearly 3&10° V/icm which gives a Stark
schematic band diagrams of InGaN/GaN QWs are drawn it of nearly 45 meV in 3-nm-thick QW. The estimated

Fig. 1. Since the restrictiorF XL>AE, breaks before ; : 19

: . . o nearly agrees with previously reporteégd, for Ing :Ga, oN.
breaking F X L>AE. with increasingF or L, restrictions Unde% 323 B 105pV/cm Iglx Lp ex?éeds A(I)élv a;gr L
betweenF_x L andAEy and between__ ar_ld ap are drawn. >3.4 nm. The hole confined level would already be formed
Note that in-plane band gap fluctuation is omitted. In CASEin the triangular potentigICASE Il) between 2.5 and 3.6 nm.
[, both electron and hole wave functions are confined in theBeyond this, the system belongs to CASE IV where the hole
well, g?dkthelyk ha\;?ﬁulnlque qL:agt'ZledCi\nSeégﬁ Ie:/(IeIs V;'r:ﬁr?and electrop could tunnel through the Coulomb potential
ZEro Slokes-like shilt IS expected. In » at leas eParrier, resulting in the separageh in opposite sides of the

ho'ﬁ v;/ave fqgctlofntr(]jropsll|nto(jthe trtllangularts?ape pc;tenu?/e“_ This may explain the extremely long decay timedpr
well at one side ot the well, and continuum states are Tormeql _ 5 5 5n4 6.2 nm at 4 K, which exceed 35 ns, in terms of

at the rest of the potential slope inside the QW region. Therez. y,iion of the oscillator strength.On the other hand,
fore a vertical component Stokes-like shift is produced. In
CASES Il and 1V, the absorption tail would be broadened

der zero field as a function afto obtainede.,=47 meV for
L=3nm, andF;=6.0x 10° V/cm.

due to QCSE and quantum confined Franz-Keldysh effect _ 10
(QCFK)'® where the originally “forbidden” QW transitions [ 300 K
become strong. To study the in-plane effective band gap 3.2r includes QCSE

fluctuation and effects oFp, on the Stokes-like shift, we [ / ] dos
prepared the samples belonging to CASES |, II, and IV as- ail absorption

suming constank p. t (PLE)

Low excitation PL spectra exhibited broad peaks pecu- . / PLpeak 1,4 %
liar to InGaN QWs with full width at half maximum 2 30fF (high ex.) =
(FWHM) of nearly 120 meV, as shown in Fig. 2. The PL % [ / (-',=_)
peak showed a redshift by 360 meV with increasinfyom e PL peak . {os 2
1.2 to 6.2 nm, and the intensity decreased lfor 3.6 nm G 29F (owex) \ ™ Fpz= Z
(L>ag). The PLE spectra exhibited broadened absorption ! \ 350kViem g
tail except forL=1.2 nm, and the broadening was pro- [ QCSE+QCFK do2 8
nounced for the wells with.>ag . 28 .

The apparent band gap energy determined as the energy [ e -~ = Stokes-like
where the PLE signal intensity drops to half the maximum, N e S A 0.0
low and high excitation PL peak energies, and apparent 001 23 45 6 7 8 910
Stokes-like shifts are plotted as a functionloin Fig. 3. As WELL THICKNESS, L (nm)

expected, Stokes-like shift increased from nearly 50 to 22(]1_ . - .

L . . IG. 3. High and low excitation PL peak energies, apparent band gap en-
meV. S"_mlar rQSUItS were obtainetd&K where the in-plane  ergy estimated from PLE spectra, and apparent Stokes-like shift of
Stokes-like shift [<3.6 nm) was nearly 100 meV. Ing1Gay N wells at RT as a function df.
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shorterr (0.97—4.7 nsfor L<2.5 nm at 4 K indicates that the support of ONRMax Yoder, Colin Wood, Yoon-Soo
the overlap of thee-h wave function is still large because  Park and DARPA(Bob Leheny.

is smaller thanag. Note that the estimated-; (6.0

X 10° V/cm) is larger tharFp,(3.5x 10° V/cm), which im-

plies that Coulomb interaction between tié pair still re-

mains.
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