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Nonisothermal electron transport in th in barrier heterostructu res is inv estigated using

Mon te Carlo tech niques. Particular atten tion is paid to th e energy balance in th ermionic

emission, and the Joule heating in the barrier region . By in troducing an energy relaxation

length , an equation for the tem perature distribution inside th e dev ice is deriv ed. Condition s

for creating a steady-state tem peratu re gradient and for integrated coolin g of electronic

componen ts are exam ined.

In today’ s integrated circuits, the need for higher density of device s and

higher speeds of operation make the issue of heating and thermal management of

prime interest. Optoelectronic device s, such as distributed feedback and vertical

cavity surface emitting lasers, are of increasing use in communication systems. In

these device s a high density of heat, on the order of kW r cm2, is generated over
s 2 .very small areas 100 ] 5,000 m m . In addition, the high temperature sensitivity of

sthe device characteristics such as threshold current, power output, and wave-
. s .length require s means for active temperature control. Thermoelectric TE coolers

are typically used for temperature stabilization of these high-power and highly

sensitive device s. Other components such as HgCdTe-based infrared imaging
s .arrays work best at low temperatures - 200 K and require multiple -stage TE

coolers. These coolers are based on the Peltie r effect. In the 1950s and early 1960s,

extensive research was done studying various material systems for TE cooling

applications. Almost all of the current commercial room-temperature TE coolers
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are made from the material that emerged at that time, Bi Te . Improvements in2 3

efficiency and cooling power, reduction in size, and development of integrated
w xcircuit fabrication techniques 1 are needed. In this article we first review the

microscopic origin of the Peltier effect based on linear transport theory. This give s

an insight that is then used to look at the prospects of heterostructures for cooling

applications. As electron transport in thin barrie r heterostructure device s goes

beyond the linear transport regime, we use some results from Monte Carlo

simulations to obtain an approximate expression for the cooling power of these

device s. It is shown that with available high-mobility and low-thermal-conductivity

materials, it is possible to create a large temperature gradient over small distances

and thus to integrate the cooling elements with high-powe r electronic components.

The conventional thermoelectric effect is based on bu lk properties of materi-

als. When electrons flow from a material in which they have an ave rage transport

energy smaller than the Fermi energy to anothe r material in which their ave rage

transport energy is higher, they absorb thermal energy from the lattice and this

cools down the junction between the two materials. Reversing the direction of

current instead generates heat and creates a hot junction. At low electric fields,

e lectronic conduction is described using the linearized Boltzmann transport equa-

tion. The expre ssions of the electrical conductivity and the Seebeck coefficient
s .thermopower can be written as

e 2 - f - feq eq2 3s . s . s . s .s s t k n k y d k ’ s E y dE 1HHH Hx3 t / t /- E - E4 p

s . 2 s . w s . x s . 31 H H H t k n k E k y E y - f r - E d kx F eq
S s

2 3s . s . s .eT H H H t k n k y - f r - E d kx eq

s . w s . x s .k H s E E y E r k T y - f r - E dEB F B eq
y : s .’ A E y E 2

fs . s .e H s E y - f r - E dEeq

where we introduce the `̀ differential’ ’ conductivity,

2 2 2 2s . s . s . s . s . s . s .s E ’ e t E n E , k , k dk dk ( e t E n E n E 3HH x y z y z x

s . s .Here t E is the energy-dependent relaxation time, n E is the ave rage ve locity ofx

the carriers with an energy between E and E q dE in the direction of current
s . s .flow, and n E is the number of electrons in this energy interval. From Eq. 1 it

can be seen that electrical conductivity is the sum of the contribution of electrons
w s . xwith various energies E given by s E , the differential conductivity within the

Fermi window factor - f r - E . The Fermi window is a direct consequence of theeq

Pauli exclusion principle ; at finite temperatures, only electrons near the Fermi

surface contribute to the conduction process. In this picture, thermopower is the
w s .xaverage energy transported by the charged carriers see Eq. 2 . This so-called

diffusion thermopower may be enhanced by the coupling of electronic motion to
s .other means of transport of energy e.g., by phonons . For a typical thermoelectric
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cooling application, current flows from a metal to a semiconductor and then to a

metal again. This creates a cold junction at the first metal ] semiconductor junction
s .and heats the second junction or vice versa . The overall performance of the

device s can be expre ssed as a function of the dimensionle ss figure of merit ZT :

S 2s T
s .ZT s 4

b

swhich describes the interplay between the Peltie r cooling at the junctions given by
. sthe Seebeck coefficient , Joule heating in the semiconductor given by electrical

. s .conductivity , and heat conduction from the hot to the cold junction b . To

increase thermoelectric cooling efficiency and capacity, one has to maximize the Z

factor. Since in most semiconductors the coefficient of thermal conductivity at

room temperature is dominated by the lattice contribution, maximizing Z requires
2 < y : < 2maximizing the electrical power product S s f E y E s . This means that thef

s .differential conductivity, s E , within the Fermi window should be as big as

possible and at the same time as asymmetric as possible with respect to the Fermi

energy.

Using the above interpretation, the advantage of going to lower-dimension

semiconductor structures becomes clear. When the dimensionality is reduced, the
s .density of states DOS `̀ accumulates’ ’ near the subband edges. With proper

s .doping, the asymmetry of s E with respect to the Fermi energy can thus be
w xincreased. Recent lite rature on quantum well and wire thermoelectrics 2 ] 7

emphasizes the increased density of states, but the symmetry is not mentioned and

its consequences are buried in the calculations of optimum doping in these
s .structures. The symmetry of s E is the main cause of low thermopower in metals,

even though they have a very large DOS.

For practical cooling applications, the advantage s of using lower-dimensional

semiconductors is mitigated by the thermal conductivity of inactive barrier laye rs
w xand other nonide al effects 5 ] 7 . Using bandgap engine ering and heterostructures

s .one can modify not only DOS but also electron velocity n E and relaxation timesx

s .t E . Based on these ideas, e lectron transport perpendicular to the quantum well

layers was proposed to reduce the mobility of `̀ cold’ ’ e lectrons and to increase the
w xthermopower 8, 9 . These methods, however, show only a modest improvement of

the thermoelectric figure of merit. All of these concepts and primary calculations

are based on the linearized Boltzmann transport equation, which is valid in the

band conduction regime and when the electronic distribution function is not

considerably changed with respect to the Fermi distribution.

The application of heterostructures for thermoelectric cooling goes beyond

the linear transport regime. Using conduction or valence band offsets at het-

erostructures, one can control the energy distribution of emitted electrons pre-

cisely. For the single heterostructure barrie r of Figure 1, under an applie d bias, hot

electrons are emitted from the cathode side , and the reverse current is suppressed

by a larger anode conduction band offset. By minimizing the amount of Joule

heating in the barrier and heat conduction from the hot to the cold side , one can
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Figur e 1. Conduction band diagram of heterostructure inte-

grated thermionic cooling.

create a steady-state temperature gradient and cool down the cathode junction.

High-precision epitaxial growth techniques allow the design of the optimum
s .cathode and anode barrier heights in a wide range 0 to 0.4 eV . Depending on the

growth constraints and lattice mismatch between materials, one can grade the

barrie r composition to produce internal fie lds and to enhance electron transport

properties. The problem of space-charge limited current can be controlled by

modulation doping or bandgap engine ering in the barrier region.

In order to analyze more quantitative ly the prospect of thermionic emission

in heterostructures for cooling applications, we study the energy balance equation.

First, le t us look at a conventional TE cooler. The cooling capacity per unit area at
sthe cold junction, Q , is given by the Peltie r effect Q s ST I, where S is theTE P C

.Seebeck coefficient, equal to 200 m V r K for Bi Te , minus the Joule heating2 3
1 2s s .generated in the branch Q s d r s I , where d is the thickness of the

J, TE 2

material and s is the electrical conductivity, which is equal to 10 5 my 1 V y 1 for
.Bi Te at dopings typically used for thermoelectric cooling applications , and2 3

wminus the amount of heat conduction from the hot to the cold junction Q sC

s .b D T r d , where b , the thermal conductivity of Bi Te , is 1 ] 2 W r m K, and D T is2 3

xthe temperature difference between the hot and the cold junctions . Thus:

1 d b
2 s .Q s ST I y I y D T 5TE C

2 s d

To estimate cooling by thermionic emission, one should calculate the total

energy of electrons emitted. As the energy distribution of these electrons is almost

exclusive ly on one side of the Fermi energy, upon current flow, strong carrier ]
carrier and carrier ] lattice scatterings tend to restore the quasi-equilibrium Fermi

distribution in the cathode by absorbing energy from the lattice, and thus cooling
sthis junction. Using Boltzmann statistics which are valid for barrie r heights greater

than a few k T , which correspond to currents of about 10 5 A r cm2 at room
B
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.temperature , we can calculate the ave rage transport energy of carriers to be
s .f q 2 k T r e , where f is the cathode barrier height. The cooling power is

C B C C

thus

k TB
s .Q s F q 2 I 6

T Iy cooling Ct /e

The emitted electrons lose their energy and generate heat in the barrier

region and at the anode side. To find the net amount of cooling we need to

calculate how much of the Joule heating in the barrier is transported back to the

cathode , and what is the amount of heat conduction from the hot to the cold

junction. As a first-order estimate, we assumed voltage drop over the barrier to be

the minimum required by the Bethe criterium for Richardson’ s thermionic emis-

sion current to be valid and that half of the Joule heating goes back to the cold
w xside 10 . In order to minimize heating effects, these preliminary calculations

suggested that the barrie r region should be very thin, on the order of microns.

Clearly, for these device dimensions, the assumptions for pure diffusive transport

are hard to justify and a more accurate analysis should take into account the finite

energy relaxation length for carriers. Figure 2 shows the result of Monte Carlo

simulations for carriers inje cted into a 3- m m-thick GaAs barrie r, under an applie d

bias of 5 kV r cm. It is assumed that the cathode barrie r height is 100 meV. It can

be seen that it takes a distance of the order of 1 m m before electrons reach

equilibrium and lose energy equal to what they gain at steady state from the

external electric fie ld. Fitting the result by an exponential expre ssion that include s

Figur e 2. Joule heating generated in the barrier as a

function of distance.
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a bias-dependent energy relaxation length, l , we get
E

dQ VJoule y x r l Es . s .s I 1 y e 7
dx d

Here, for simplicity, we did not include a heat transport equation for various

phonons involve d in the energy relaxation mechanism. It is assumed that all of the

energy lost by the electronic system is a source for local heat generation. One can

obtain an analytic solution for the temperature distribution equation,

d
2
T V

y x r l Es . s .b s y I 1 y e 8
2 ddx

with the following boundary conditions:

dT 2 k TI B C
b s f q I y QC T Ií t / s .dx e 9xs 0

J <T s Txs d H

These boundarie s specify the thermionic cooling minus a possible heat load, Q ,
T I

on one side of the device and a heat sink with temperature T on the other side .
H

The expression for overall cooling power is thus

2k T 1 l l bB C E E y d r l Es . s .Q s F q 2 I y IV y y e y 1 y D T 10T I C 2t / t /e 2 d dd

This equation is similar to the conventional thermoelectric case. It has three terms:

thermionic cooling, `̀ Joule ’ ’ heating, and heat conduction. The Joule heating term
s .is IV total voltage drop over the barrie r times the current times a coefficient

which takes into account the finite electronic energy relaxation length. Plotting this
s .coefficient in Figure 3 shows that in the limit of very thick device s d c l , itE

1
reduces to , which is the result for pure diffusive transport. In the other limit of2

s .very short device s d g l , this term give s zero contribution. In this case of
E

ballistic transport, all of the electron’s energy is deposited at the anode side.

In the above expression, the coefficient of thermal conductivity to use is not
snecessarily the sum of lattice and electronic contributions as is the case for

.thermoelectrics . The net electric current is from the cold to the hot junction, and

only in a pure diffusive conduction, where the electrons have many collisions, can

electronic and lattice thermal conductivitie s be added independently of the net

current. Again in the limit of ballistic transport from cathode to anode, there is no

contribution of electronic thermal conductivity to the heat flow from anode to
scathode if the reverse current is suppressed by an appropriate band edge disconti-

.nuity . As the thermal conductivity of most semiconductors is dominated by the

lattice contribution, we ignore the electronic component at this time. The lattice

thermal conductivity of a thin film is not equal to the bulk value . There are quite a
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Figur e 3. Fraction of the total Joule heating generated in the

barrier that is transferred to the cathode, as a function of the

barrier thickness over energy re laxation length for carriers.

The anode side is assumed to be in contact with a heat sink.

few exce llent recent studies of thin-film and superlattice thermal conductivitie s
w x11 , but in the absence of a comprehensive theory we will use the bulk values here.

In fact, from the steady-state temperature gradient in a thin barrier under an

applie d bias, one can calculate its thermal conductivity based on the electronic

transport parameters. This method is already used for thermoelectric materials and
w xis known as the Harman method 12 .

Finally, we should consider the bias dependence of the thermionic emission

current. Richardson’ s expre ssion is valid only at high electric fie lds, when the

transport of the carriers over the barrie r is not a limiting factor. From more

elaborate calculations combining thermionic emission and drift-diffusion theories
w x13 , one can approximate ly write the overall effect of these two limiting processes
s .`̀ supply’ ’ and `̀ transport’ ’ as follows:

1 1 1
s .f q 11

I I Ithe rmionic drifty diffusion

n y 0 k T0 B
s .I f en m E q eD s en m E q 12drifty diffusion 0 0 t /d ed

1 r 2s .I m 2 m p r k T E q k T r eds .eff B C B
s .f 13

1 r 2I s .1 q m 2 m p r k T E q k T r edthe rmionic s .eff B C B

where m is the mobility of the barrier laye r and m is the effective mass thateff

w xenters in the thermionic emission expression. Grinberg 14 used arguments based
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on the conservation of lateral momentum in thermionic emission to show that the

correct effective mass to use is the m inim um of emitter and barrie r regions. The
w s .xsimple estimate Eq. 13 and the Monte Carlo calculation are shown in Figure 4.

Without any fitting parameters, using a mobility of 8,000 cm2 r V s and m r m seff 0

0.067, the two results match quite well. One can get a better fit of the Monte Carlo
s 2 .result by using a slightly highe r mobility value ; 10,400 cm r V s .

In order to calculate thermionic cooling power accurately, one should per-

form Monte Carlo simulations for each material system under study. After deriving

parameters such as bias-dependent energy relaxation length, the above equations
scan be used to find optimum device design barrie r thickness, cathode and anode

.conduction band offsets, etc. . To get an idea of the net amount of cooling that can

be achieved using this method, we consider the case of an InGaAs barrie r material

lattice matched to InP. This material is a good candidate for thermionic cooling

because of its low thermal conductivity, high electron mobility, and not too small

e lectron effective mass. InGaAs is a III ] V compound similar to GaAs, so the
w xmajor energy relaxation mechanisms are expected to be similar in nature 15 .

Using various material parameters of InGaAs, and taking 0.4 m m for the energy

relaxation length, we can calculate the net cooling power at the cold side as a

function of the thickness of the barrie r for different cathode barrie r heights
s .Figure 5a . The anode barrier height does not enter directly into the calculation of

maximum cooling power. It is assumed to be high enough to suppress the reverse

Figur e 4. Fraction of the carriers returning back to the

s .cathode after being emitted Monte Carlo results: circles .

This give s the deviation of the total current from Richardson’s

expression. A simplified drift-diffusion model, which assumes
2that m r m s 0.067 and m s 8,000 cm r V s, is shown bye f f 0

the dashed line. The solid line is the fit of Monte Carlo result

using the drift-diffusion model with a mobility of 10,400
2cm r V s.
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s .Figur e 5. a The net cooling power of a HIT cooler made of

InGaAs as a function of the thickness of the barrier laye r for

s .different cathode-side conduction band offsets. b The total

current as a function of the same parameters.
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current form the hot to the cold side. The anode barrier, however, affects the

efficiency of the device directly. It can be seen that at room temperature, thermionic

cooling can maintain a temperature gradient of 10 8 over a distance of 2 m m and

provide a net cooling power of couple of 100 W r cm2. The currents required for
2 s .this cooling are on the order of 50 kA r cm Figure 5b .

It can be seen from Figure 5 that decreasing the cathode barrie r height will

increase the cooling power. This is true only down to barrie r heights on the order

of k T . Further reduction of the barrie r height will increase the current substan-
B

s .tially increasing the Joule heating , without much increase in the cooling power.

There is thus an optimum barrier height for maximum cooling. This optimum

barrier falls outside the range where the assumption for Boltzmann distribution in
s .Eq. 6 is valid. To derive the optimum value of the cathode barrie r, one should use

the full heat flux equation with a Fermi-Dirac distribution function.

Figure 6 shows the net cooling power as a function of temperature difference
sbetween the hot and cold sides for the 2- m m InGaAs barrier solid line, filled

.circles . Other curves correspond to the cases where thermal conductivity is
s . s 2 .reduced 2 and 1 W r m K , mobility is increased 30,000 cm r V s , and effective

s .mass is increased m r m s 0.08, 0.12 . Of course, most of these parameters areeff 0

interdependent, and it is impossible to change one without changing others. This

highlights, however, the importance of various parameters in the performance of

the device and indicate s the direction for improvements.

In conclusion, electron transport in single barrie r heterostructure devices is

inve stigated using Monte Carlo techniques. Studying the balance among cooling at

Figur e 6. The net cooling power of an InGaAs HIT device as

a function of the temperature difference between the hot and

s .cold sides solid curve with dark circles . The other curves

show the prospects of HIT cooling by decreasing the thermal

conductivity of the barrier, increasing the mobility, or increas-

sing e lectron’s effective mass i.e., increasing Richardson’s

.thermionic emission current .
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the cathode junction due to the selective emission of hot electrons, Joule heating in

the barrie r due to various energy relaxation mechanisms, and heat conduction from

the hot to the cold sides, conditions for the net cooling of the cathode laye r be low

room temperature are derived and important material parameters are discussed.
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