More-than-Moore with Integrated Silicon-Photonics

Vladimir Stojanović Berkeley Wireless Rearch Center UC Berkeley

- Milos Popović (Boulder/BU), Rajeev Ram, Jason Orcutt, Hanqing Li (MIT), Krste Asanović (UC Berkeley)
- Jeffrey Shainline, Christopher Batten, Ajay Joshi, Anatoly Khilo
- Mark Wade, Karan Mehta, Jie Sun, Josh Wang
- Chen Sun, Sen Lin, Sajjad Moazeni, Nandish Mehta, Michael Georgas, Benjamin Moss, Jonathan Leu
- Yong-Jin Kwon, Scott Beamer, Yunsup Lee, Andrew Waterman, Miquel Planas, Rimas Avizienis, Henry Cook, Huy Vo
- Roy Meade, Gurtej Sandhu and Micron Fab12 team (Zvi, Ofer, Daniel, Efi, Elad, ...)
- DARPA, Micron, NSF, BWRC
- IBM Trusted Foundry, Global Foundries

More-than-Moore perspective

Enhanced CMOS enables new applications

World's first siPhotonic transmitter in 45nm SOI Stojanovic, Popovic, Ram

2004 World's first 60GHz CMOS Amplifier Niknejad & Brodersen

1997 One of the first CMOS radios Rudell & Gray

Lon Phase Shifter LNA Mixer LNA Mixer Do Ottr Ourcer AG	LO2 Phase Shifter
	Inductors ir process

Inductors in IC process Nguyen & Meyer 1990

2012

IBM/GF 12SOI (45nm) CMOS

- 300mm wafer, commercial process
- MOSIS and TAPO MPW access
- Advanced process used in microprocessors
- Photonic enhancement enables VLSI photonic systems (no required process changes)

IBM Cell

IBM Espresso

IBM Power 7

"Zero-Change" Photonics in 45nm

- Photonics for free! (No modification to the process)
- Closest proximity of electronics and photonics

BWRC

• Single substrate removal post-processing step

Monolithic photonics platform with fastest transistors

Integrated photonic interconnects

BWRC

111

Single channel link tradeoffs

Need to optimize carefully

Moderate data rates most energy-efficient

Georgas CICC 2011

DWDM link efficiency optimization

- Optimize for min energy-cost
- Bandwidth density dominated by circuit and photonics area (not coupler pitch)

Towards an Optical DRAM System

70M transistors 1000 optical devices **DARPA POEM**

Slide 10

World's First Processor to Communicate with Light

Silicon-Photonic components integrated directly in the chip DARPA POEM & PERFECT – Stojanović, Asanović

Processor Cores – 45nm SOI

Frequency (MHz)

[Lee ESSCIRC 2014]

Vdd (V)		
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20		
15.8 12.8 10.6 8.7 7.1 5.7 4.6 3.7 3.1 2.6 2.1 1.6 200		
16.7 14.0 11.6 9.6 7.9 6.4 5.3 4.3 3.6 3.0 2.4 1.9 250		
14.9 12.4 10.3 8.6 7.0 5.8 4.8 4.0 3.3 2.8 2.2 300		
15.6 13.0 10.9 9.1 7.5 6.2 5.2 4.3 3.7 3.0 2.4 350		
13.6 11.3 9.6 7.9 6.6 5.5 4.7 3.9 3.3 2.6 400		
14.1 11.8 9.9 8.3 6.9 5.8 4.9 4.2 3.5 2.8 450		
12.2 10.3 8.6 7.2 6.1 5.2 4.4 3.7 3.0 500		
12.5 10.5 8.8 7.5 6.3 5.4 4.5 3.8 3.1 550		
10.8 9.1 7.7 6.5 5.6 4.7 4.0 3.3 600		
11.0 9.3 7.9 6.7 5.8 4.9 4.2 3.3 650		
11.2 9.5 8.1 6.9 5.9 5.0 4.3 3.5 700		
11.4 9.7 8.3 7.1 6.1 5.2 4.4 3.6 750		
9.8 8.4 7.2 6.2 5.3 4.5 3.6 800		
8.6 7.4 6.4 5.4 4.6 3.7 850		
8.7 7.5 6.5 5.5 4.7 3.8 900		
8.8 7.6 6.6 5.6 4.8 3.9 950		
7.3 6.6 5.7 4.8 4.0 1000		
6.7 5.7 4.9 4.0 1050		
5.1 4.3 1250		
Not Operational 4.2 1300		
1350		

- RISC-V open ISA
- Scalar-vector cores Boot Linux
- 0.2-1.35GHz, 4-16 GFlops/W

Si Waveguides

BWRC

Ш

Vertical couplers

Waveguide Diffraction Grating

Waveguide Taper

[Wade OIC 2015]

Slide 14

Slide 15 [Orcutt 2013, Alloatti APL 2015]

Key Device Components

BWRC

Integrated Heater Output Waveguide

[Shainline OL 2013, Wade OFC 2014]

Slide 16

Transmitter

Receiver

- Low parasitics from monolithic integration enable single-stage $5 \mbox{k} \Omega$ TIA receiver
- 10 Gb/s operation at 290 fJ/bit with 8.3uA sensitivity

5 Gb/s Chip-to-Chip Link

Slide 19

5 Gb/s Link Efficiency Summary

 "zero-change" monolithic competitive with state-of-the-art heterogeneous platforms

BWRC

680 fJ/bit, 14mW optical power [Zheng PTL 2012**]

*Includes all closed-loop circuits + 0.5 nm tuning power

**0.5nm tuning power only Slide 20

5 Gb/s Link Efficiency Summary

560 fJ/bit for laser – wall-plug**

BWRC

- Not using our best devices in the link
 - 1dB loss couplers [Wade, OIC 2015] (on the same chip instead of 4dB in the link)
 - 5-10x better photodetector (0.1-0.2 A/W photodetector on the same chip)
- Expect to obtain >40x smaller laser power (65fJ/b optical)

**11.6% QD laser wall-plug efficiency

*Includes all closed-loop circuits + 0.5 nm tuning power

Slide 21

BWRC Electronic-Photonic Packaging

Die-thinned chip with selective substrate removal

111

- Flip-chip onto FR4 PCB using C4 bumps
- Selective substrate removal of optical transceiver regions

Optical Memory System Demo

Tx and Rx DWDM Transceiver Banks

11 x 8 Gbps Tx Demonstration

- 11 rings, each demonstrating 8 Gbps modulation
 - Independently testing one at a time
 - Potential for 88 Gb/s on a single fiber/waveguide
 - Each ring is auto-locked

Going Faster – PAM2 and PAM4

Chip floorplan

Transmitter eye diagrams

- Extinction ratio (ER): 3dB, Insertion loss (IL): 5.5dB
- PAM4 coding used: (0,5,10,15)
- 42fJ/b driver energy efficiency

Improved Rx Topologies

- Leverage tight electronic-photonic integration to create new, more sensitive receiver structures
 - Differential, DDR receiver

[Nandish Mehta et al. ESSCIRC16]

Platform Performance Summary

Metric	[Beamer ISCA 2010] Conservative Estimates	45nm SOI Platform	Bulk Photonics Platform*
Waveguide Loss	4 dB/cm	3.7 dB/cm	10.5 dB/cm
Vertical Coupler Loss	1 dB	1 dB	3 dB
Tx Data Rate	10 Gb/s	20 Gb/s	5 Gb/s
Tx Energy Per Bit	120 fJ/b	42 fJ/b	350 fJ/b
Rx Data Rate	10 Gb/s	12 Gb/s	5 Gb/s
Rx Energy Per Bit	80 fJ/b	297 fJ/b	1700 fJ/b
Rx Sensitivity	10 μΑ	8 μΑ	36 µA
PD Responsivity	0.9 A/W	0.44 A/W	0.2 A/W
Thermal Tuning Efficiency	1.6 μW/GHz	3.8 μW/GHz	10 μW/GHz

- Comparison to a proposal for the processor-memory system we published 6 years ago
- Meeting/exceeding most system specs

*considerably slower process than one assumed in [Beamer ISCA 2010]

Poly Si Photonics in Bulk CMOS

DRAM processes heavily optimized for cost

BWRC

Micron wafers

Memory: Bulk photonics integration

First-ever link result with bulk CMOS photonics Micron D1L Reticle Chip 1 Chip 2 90/10 Rx Macro Tx Macro Single-Single-Splitter Mode Fiber Mode Fiber Rx 180nm Tx λ_1 Laser **Bulk chip** Monitor Scope 10⁶ Reticle -Rx-1 Chip 1 Chip 2 10⁻² -Rx-0 Bit-Error Bit--01 Rate Tx Macro ` 10⁻⁶ 10⁻¹⁰ -Rx Macro 10⁻¹² 50 Time (ps) 100 Tx Single-λ-Macro Rx λ-Slice 100 µm PRBS PRBS BER 100 µm Tuning Tuning Checker Checker Generator Generato 8:2 Ser. 8:2 Ser. 2:8 Des. :8 Des. /ertica Heater Transmitter Receiver Coupler ansmitte Vertical Coupler Output' Dummy Microring Microring Detecto Coupler Modulato Detector [Meade et al. VLSI Tech Symp 14, Sun et al VLSI Ckts Symp 14]

BWRC

111

WDM in bulk-photonics - Tx

- All slices BER checked at 5Gb/s
- 45Gb/s aggregate rate per waveguide

WDM in bulk-photonics - Rx

- All receive slices functional and BER checked at 5Gb/s
- Single fiber more I/O BW than x16 DDR4 part

- Silicon-photonics enabler of new capabilities
 - Think "new on-chip inductor" or "new on-chip t-line"
- Potentially revolutionize many applications despite slowdown in CMOS scaling
 - VLSI compute and network infrastructure just a start
- Need process, device, circuit and system-level understanding