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1 - Introduction

Photonie crystals are nano-structures exhibiting the interesting behavior that
light at certain frequencies cannot travel in the crystal, whereas at other frequencies
it does travel and is scattered. This phenomenon is due to the periodic variation in the
index of refraction of the crystal [17], [8].

Such crystals also have the property that light at an allowed frequency may travel
along a particular path, as a consequence of a small non-periodic variation (impurity)
in the refractive index. The role of mathematics is crucial to the solution of several
problems involving nano-structures. In particular, the design of photonic crystals is
based on the identification of the refractive index of erystals when the allowed and
forbidden frequencies are specified.

The purpose of this paper is to derive physically relevant mathematical results on
the design of photonic crystals.

The outline of the paper is the following: in Section 2 we illustrate some physical
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properties, mention relevant applications and introduce the mathematical model
that describes the propagation of light in photonic crystals. In Section 3 we give the
basic mathematical results. In Section 4 we introduce the scattering matrix and the
period map which allows us to characterize the propagation of the light in the crystal
in terms of its behavior when propagating for only one period. In Section 5 we
propose some new results on the design of photonic crystals and in Section 6 we draw
some conclusions and mention some open problems.

2 - Physical properties, applications and mathematical modeling

2.1 - Physical properties and applications

Photonic crystals are mono, bi or tri-dimensional crystal lattice structures
characterized by a periodic refractive index' n(x, ¥, z) = NLCTEYD)

These crystals have many properties analogous to those of semiconductor crystals,
such as the appearance of pass bands and band gaps and a complex dispersion relation
[7]. Repeating the dielectric constant in a pure unbounded photonic crystal periodi-
cally generates allowed and forbidden photonic energy bands in the same way as the
periodic potential in a semiconductor crystal affects the electron motion by defining
allowed and forbidden electronic energy bands. Forbidden bands in photonic erystals
are called photonic band gaps or PBGs. In Figure 1 we show a typical band structure.

Replacing the material in a bounded region by a different material or changing
the size of a period while keeping the same material, we can put the (discrete) en-
ergies of allowed states into a band gap (crossed red dots in Figure 1). Besides the
band gap structure, another analogy is between polarization and spin. The two or-
thogonal polarizations for photons are analogous to the two electron spins [7]. On the
other hand, electrons have mass and charge while photons have neither mass nor
change. Moreover, electrons follow the Fermi-Dirac distribution, whereas photons
obey Bose-Einstein statistics.

The band gap structure allows us to design resonant cavities [7], [5], [6], wave-
guides [7], [5], [6] and optical fibers [2]. Introducing impurities we can either confine

! ¢ and u are the electric permittivity and magnetic permeability of the medium,

respectively, whereas ¢ and g, are the electric permittivity and magnetic permeability of
the vacuum. Recall that the permittivity ¢ and the permeability x of a medium together
determine the phase velocity v of electromagnetic radiation through that medium:

& =—.
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Fig. 1. The band gap structure of a photonic crystal. The band gap structure of a pure crystal
is plotted in blue, crossed red dots are allowed energy levels introduced by an impurity. The
axis units are arbitrary.

light (resonant cavity) or light can be guided in the erystal by using impurities to
create preferred pathways.

Photonic crystals can also be used to design next generation optical fibers.
Standard optical fibers rely on light being guided by the physical law known as total
mternal reflection (TIR) or index guiding. In order to achieve TIR in these fibers,
which are formed from dielectrics or semiconductors, it is required that the re-
fractive index of the core exceeds that of the surrounding media. In photonic crystal
fibers light is confined to propagating along PBGs, while the core can be a different
medium with a small index of refraction. These fibers have properties that differ
from those of standard fibers: they allow bending by large angles and soliton pro-
pagation, both of which are very important to telecommunication.

Photonic crystals are also characterized by seemingly strange properties like
negative refraction, negative diffraction and the superprism effect [10], [12] typical
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of aleft-handed metamaterial. As to the first property, we can say that “Snell’s law is
reversed.” As a matter of fact, in photonic crystals, for certain frequency intervals,
the rays will be refracted on the same side of the normal upon entering the material.
Negative diffraction is another unusual phenomenon: the luminous cone collimates
inside photonic crystals unlike what occurs at ordinary diffraction. Finally, photonic
crystals are characterized by a high dispersion capability. A prism made up of a
photonic crystal would have a dispersion capability that is about 500 times stronger
than that of a prism made of a conventional material [9]. Using these properties
(negative refraction, negative diffraction and superprism) a research group at the
Georgia Institute of Technology has designed an optical de-multiplexer [13].

Nonlinear optics also plays an important role in this kind of crystal. Some of the
most interesting nonlinear phenomena are second and third harmonics generation
(SHG and THG), optical parametric amplification (OPA), optical rectification and
white-light supercontinuum generation (WLSCG).

In a linear medium the dielectric polarization vector P(r,t) can be written as

P(r,t) = ey, r, OEr,?),

where r is the position in space, ¢ is the time, while ¢ is the electric permittivity of
free space and y,(r, ) is the electric susceptibility of the medium.? If the medium is
nonlinear then the previous formula is not correct and the susceptibility also depends
on the electric field amplitude:

Pir,) =Y P DB )+ > 10 DB DEr ) + ..
J Jik

for 1,5,k = 1,2, 3, where the different y’s are electric susceptibilities.
Exciting a medium with two electromagnetic waves with different frequencies an
and wy, the dielectric polarization vector becomes

P = P(w;) + P(wg) + P(wy + w2) + Plw; — wg) + ...

2 The electric susceptibility y(r,t) of a dielectric material is a measure of how easily the
medium polarizes in response to an electric field. In an anisotropic medium y,(r, t) is a tensor. We
recall that y, = ¢. — 1 and the electric displacement D is related to the polarization density P by

D =¢E+P =&+ y,)E =¢e E.
In general, a material cannot polarize instantaneously in response to an applied field, and so the
more general formulation as a function of time is

t
P(r,t) = & J 1.t — OEw,t)dt .

—00
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According to this we can generate light with a double or triple frequency (SHG or THG)
and amplify a signal input in the presence of a higher-frequency wave (OPA). It is also
possible to generate quasi-static electric fields or to produce an optical spectrum which
covers all of the visible range (WLSCG). This last property is commonly used for
spectroscopic purposes to produce a very broad spectrum of light starting from an
initially spectrally much narrower light pulse (a few tenths of a nanometer or less).

Another important nonlinear phenomenon is the Kerr effect, according to which
the refractive index depends on the electromagnetic amplitude, i.e.,

n = n(|E)).

The Kerr effect is used to design optical transistors [18] that are the basic compo-
nents of integrated optics. Research in photonic crystals is also enhanced by low
energy loss (50cm ™1 = 2dB/100um, [5]).

2.2 - Mathematical modeling

Our mathematical model generalizes both the Schrodinger equation, which de-
scribes electron propagation in a semiconductor crystal, and the Maxwell and
Helmholtz equations, which describe electromagnetic wave propagation. A mathe-
matical model capable of merging both models is the following:

2.1) () + Q@ (@) = i@yl ),

where Q(x + p) = Q(x), n(x + p) = n(x) and pis the period. Here Q(x) is the potential
energy and n(x) is the refractive index. This approach allows us to extend the
quantum mechanical postulates to describe light propagation rather than to adopt a
classical model like the Helmholtz equation. In fact,

1. each eigenfunction furnishes an allowed state;

2. the state of a quantum mechanical system is completely specified by the wa-
vefunction;

3. the squared absolute value of the wavefunction |y(4, )|* is proportional to the
probability to find a particle within an infinitesimal interval centered at x.

We can use quantum mechanical operators to obtain a probabilistic interpretation
of the wavefunction.
The Schrodinger equation® for electrons and the Helmholtz* equation for photons

2
- j—mw”(z, ) + Q@ (4, x) = Ey (4, x), with Q(x + p) = Q(v) and p is the period.

Yy, x) = Jn(e)w(l, x), with n(x + p) = n(x) and p is the period.
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in a crystal are both eigenvalue equations. Though very similar, the physical
meaning of the eigenvalue 4 is very different. We can appreciate the difference by
considering two examples: electrons in free space (Q(x) = 0) and photons in an op-
tically homogeneous medium (n(x) = const). In these cases we have

2

- zh—ml/lg(%) = Ey,(x) Schrodinger equation

Y (@) + oPeopigny,y, (@) = 0 Helmholtz equation.

1
Recalling Plank’s energy law for photons E = A and ¢ = —— we can derive

Hoto
2mE .
5 electron in free space
)», = h EZ
@Peopty = 2 photon

where / is the eigenvalue parameter of the equations. We observe that in the first
case the eigenvalue parameter 1 is proportional to the electron energy, whereas
in the second case the eigenvalue parameter is proportional to the square of the
energy.

In this work we introduce the period map as a matrix operator that allows us to
obtain the solution at any location in the crystal by analysing only one period. Our
primary purpose is to calculate the refractive index from the left and right reflection
and transmission coefficients, which is a typical inverse problem. To do so, we in-
troduce the scattering matrix, that is the matrix uniquely characterized by the re-
flection and transmission coefficients, and then divide this inverse problem into the
following two subproblems:

1. determining the period map from the scattering matrix;
2. determining the refractive index from the period map.

In particular, we analyse the piecewise-constant case for the refractive index n(zx)
in a mono-dimensional crystal and consider the impurities confined to an interval of
length less than a crystal period.

3 - Basic properties

In the following subsections we consider equation (2.1) determine its solution and
analyse the case of a crystal without impurities.
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3.1 - Floquet’s solutions and Hill’s discriminant

Let us first derive Floquet’s theorem ([15, Ch. XXI] and [11], [3]) and Hill’s
discriminant. There exist unique linearly independent solutions 6(4, ) and ¢(4, x) of
equation (2.1) satisfying the initial conditions

(3.1a) 00,0)=1,  0'(1,0)=0,

(3.1b) $(,0)=0,  ¢(1,0)=1.

Let yw(x) # 0 be a solution of equation (2.1) satisfying the t-periodicity or Born-Von
Karman’s condition

(3.2) w4, @+ p) = (i, v),

where 7is a constant. Since y € C?, by substituting # = 01in (3.2) and its x-derivative
we have

(3.3a) w(4,p) = tw(4,0),

(3.3b) y'(4,p) = w/'(2,0),

for some constants 0 £ 7 € C. Obviously w(4, «) is a linear combination of 6(4, x) and

#(, x):
w(d,x) = c10(4, %) + cop(Z, x).

This linear combination satisfies the boundary conditions (3.3) if and only if the linear

(1—0(/1,10) —¢(4, p) ><C1>_<0>
—0Gp) t—-dUp)\e) \o

has a nontrivial solution. This is the case if and only if the system determinant

(3.4) = —[00,p)+ 0, plt +1

system

vanishes. Here we have used the constancy of the Wronskian® w = 0¢' — /¢ and
condition (3.1). Introducing Hill’s discriminant

® Using equation (2.1) we easily show that
w = (0¢ — 0/45)/: 09" —0"¢ = 0Q — m*)¢p — (Q — m?)0p = 0.

To be more precise, w(x) = const. = w(0). From conditions (3.1) it follows that w(x) = 1.
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we have
(3.6) AT +1=0
as well as

{ 71+ 12 = A(),

T1T2 = 17

where 71 and 72 are the roots of equation (3.6). Generalizing Born-Von Karman’s
condition to m periods we get:

w(A, x+mp) = "w(l, x).

When nontrivial, such solutions are unbounded as x — +oo if |7| > 1 and as
x — —ooif|z| < 1. Thus boundedness of such nontrivial solutions requires || = 1, so
71 = e and 15 = ¢~ *P with k € R. Hill's discriminant becomes

(3.7) AR =11 + 171 = *P 4 7P = 2 cos (kp).

Hence we have bounded solutions if and only if A(1) is in [ — 2,2]. For such values
of A a bounded solution exists and hence an electromagnetic wave can propagate
inside the crystal. Outside this range there is no physical solution, because these
waves, which are called unbounded solutions, would have infinite energy. By the
Schrodinger-Helmholtz Spectrum, denoted by {c}, we mean the set of 1 values
such that w(4,x) is bounded in x € R.

The natural extension of a solution of equation (2.1) has the Bloch representation

(3.8) w(,x) = " (4, ),

where y(4,x) is periodic with period p. This is easily verified by checking the peri-
odicity of e=#*y(J, ). We observe that k can be interpreted as a propagation vector of
Bloch’s wave. Generalizing Firsova’s formula [4], defined for n(x) = 1, we can write k
as follows®

1 (i [
(3.9) k() = 5 aresin (é \ AR — 4 ) ,

and state Floquet’s Theorem [11] in terms of k = k(1) and 4.

Theorem 3.1 [Floquet]. Iftherootst; and 1o of the quadratic polynomial (3.4)
are distinct, then equation (2.1) has two linearly independent solutions of the type

e Gaw) and e yy(2, @),

¢ Formula (3.9) can be derived from equation (3.7).
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where y;1(4,x) and y5(,x) are both periodic with period p. If 11 = o, then equation
(2.1) has a nontrivial periodic solution (t1 = 12 = 1) or an antiperiodic solution
(11 = 12 = —1). Let y(x) denote such a solution and let ¢(x) be another solution that is
linearly independent of y(x). Then there exists a constant $ such that ¢(x + p)
= 119(x) + Iy (x), while J = 0 is equivalent to

00,p) =¢U,p) =1 and ¢(,p)=0(0,p)=0.
Further, the solutions of equation (2.1) are all bounded if and only if

() either 0, p) + ¢ (1, p) belongs to (— 2,2),
() or 04, p) = §(2,p) = £ 1 and $(4,p) = 0'(2,p) = 0.

We can calculate 7 as a function of A from equation (3.6),

7)) = % {A(A) F\/AL)? — 4] .

Assuming A¢ {o}, let us set 71(2) and 72(4) such as
[ti(A)] <1 and |r2(L)| > 1,
then for any 1 with A ¢ [ — 2,2]

1 2

E[A(i)—\/zi(/l) —4|, 4>z,
(3.102) 7(l) = L _

QEA(1>+\/A<A)2—4_, A() < -2,

17 ) .

5 _A(/l) + /A% - 4], A2 > 2,
(3.10b) 75()) = L _

Q_A(/I)f\/zl(i)zfél_, A0 < =2,

where the square root is positive. If 1 € {¢} we can write

(3.11) 00 = % [A(/l) A0 — 4] =),  —2<40) <2,

where the asterisk denotes the complex conjugate. Recalling that

(3.12) u() =e" and (1) = e ",

we have

(3.13) kelR, A(2) € [ —2,2] or equivalently 2 € {o},
' ke C\R, 4(0)¢[—2,2]or equivalently 1 ¢ {5}.

Hereafter in the paper we shall assume Im{k} > 0if AN ¢[ — 2,2].
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3.2 - Eigenvalues: properties

Proposition 3.2. Given the following eigenvalue problem:

—y"(A, ) + Qx)y(A, x) = in(x)zl//(i, ),
w(4,p) = tyw(4,0),
w'(4,p) = '(4,0),

if Q(z) and n(x) are real functions, then 1 is real for every t such that |t| = 1.

Proof. Multiplying equation (2.1) by w*(4,x) and integrating the resulting
equation from 0 to p we obtain:

p p
[ (o + QU)o = 2 [l
0 0

from which we can derive

P P
* 2 2 ) 2
vl [+ Qi) de = i [y de,
0 0

P P

/G P U ) + 3 O, O (4, 0) + J(Iw’l2+Qlw|2)d% = AJ 2|yl de,
0 0

that is
P P
/ k% / * 12 2 s 2 2

— /' (4, 0Ty (2, 0)+y/ (4, 0y (“)*J("/" +Qly )dm:AJn lw|? de.

0 0

Recalling that |7] =1,

P p
(3.14) J(\w’(i, )| + Q)w(, x)|2>dac =2 Jn(m)zh//(A, o) de

0 0
from which we can conclude that A is real. O

Theorem 3.3. The eigenvalues of equation (2.1) under the boundary condi-
tions (3.3) form a nondecreasing sequence of numbers A > A* where

. Q)

(3.15) A= orgnxlgp sk
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which tends to + co. For |t| = 1 and © # £ 1 these eigenvalues are simple, while for
© = 41 they have multiplicity one or two. The eigenvalue 1* can only occur if the
corresponding eigenfunction is constant, Q(x) = A*n(x)?, and the boundary con-
ditions are periodic.

Proof. For a noneigenvalue 4y € R, let f(x) be an electromagnetic pulse, so
that the right hand side of equation (2.1) is An(x)*[y(4,x) + f(x)]. In this case
equation (2.1) with boundary conditions (3.3) (see Appendix A) can be written as the
equivalent integral equation

p P
(3.16)  w(4,x) — (4 — 4) Jg(ac, y; Aoy, y) dy = JQ(w, Y; o)y’ (y) dy,
0 0

where G(x,y; A) is the associated Green’s function. In this integral equation the
Green’s function kernel G(x, y; ) has the form

&), (y)
29 )

)

ERTEDY
j

where {¢j} is an orthonormal basis of L2((0, p); n(x)>dax) consisting of eigenfunctions
corresponding to (real) eigenvalues {1”}. The summation is finite for degenerate
kernels and infinite for nondegenerate kernels. Since G(x, ; A) cannot be C! in (x, %)
[because this would contradict relation (A.9)], the summation and hence the number
of eigenvalues must be infinite. Furthermore, from (3.14) it follows that the eigen-
values / are real, satisfy 4 > 1" with A" as in (3.15), and can only coincide with A if the
eigenfunction is constant, Q(x) = )L*n(ac)z, and the boundary conditions are periodic.
Thus there exist two infinite sequences, one of eigenvalues

V<< h<le<g<--, Iy — + 00,
under periodic boundary conditions and the other one of eigenvalues
V< <up<pg<...,  p, — +0oo,

under anti-periodic boundary conditions. For 7 # 1 there also exists an infinite se-
quence of eigenvalues

A <aP <9<, A - oo,

under the boundary conditions (3.3). The multiplicity of an eigenvalue is at most 2,
because the differential equation (2.1) has order 2. For t # £ 1 the multiplicity is
always one, because the eigenvalues A follow from (3.6), so that one differential
equation has both a t-periodic and a t~!-periodic solution. O
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Now we state the following important theorem concerning a very important re-
lation between the eigenvalues {4;} and {y;} [11]:

Theorem 3.4 [Oscillation theorem]. To each differential equation (2.1) we
associate two monotonically increasing infinite sequences of real numbers {1},
and {u, },-, such that equation (2.1) has a solution of period p if and only if 2 =
(n=0,1,2,...) and a solution of primitive period 2p 1if, and only if, 1=y,
(m=1,2,3,...). These sequences satisfy the inequalities

(3.17) Qo <py Spg <M <lda<ug<py<izg<iga<...
and the relations

(3.18) lim 4, = 40, lim p, = +oc.

Nn—0o0 n—oo
The solutions are all bounded for 1 in the intervals
(3.19) (Ao, 1), (g A1), (A2, pg),  (pays 43), -

For A at the endpoints of these intervals (and always for A = Ay) there exist un-
bounded solutions. The solutions are all bounded for A = Agy1 0v A = doy 12 if and
only if Aons1 = Aont2 and they are all bounded for 1. = us,, 1 0¥ A = s, .5 1f and only
U Uoyi1 = Uonro- The numbers Ly, are the zeros of A(A) = 2 and the numbers u, are
the zeros of A()) = — 2.

We call 2, the characteristic values of the first kind and u, the characteristic
values of the second kind. The intervals in (3.19) are called bands. We consider an
endpoint as belonging to a band if for that value of 1 all solutions of equation (2.1) are
bounded. The gaps between the stability intervals are called band gaps, one of which
is the zero-th band gap ( — oo, J¢]. The bands are numbered consecutively 1,2.3, ...
and may line up. The band gaps are numbered consecutively 0,1,2, ... and may be
empty.

3.3 - Analysis of Hill’s discriminant

In the previous section, we showed that analysis of Hill’s discriminant permits us
to calculate the bands. We report the same important results about Hill’s dis-
criminant without proof [11]. First of all we extend A(1) to the complex A-plane which
we indicate by 4. More precisely we mention the following properties:

@) A4A) — +cif Aie Rand 1 — — oc;
(b) in each band-gap, excluding band-gap 0, there is a unique relative maximum or
a unique relative minimum {¢;}: (¢; € band-gap ¢, 7 > 1). If a band-gap is empty and
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Fig. 2. A plane. The real axis and the I'-curve are plotted in blue. The vertical asymptotes,
Real{1} = (in)z, where ¢ = 1,2, ..., are plotted in red.

A(&;)is arelative maximum then &; = 4;_1 = 4;; conversely if a band-gap is empty and
A(&;) is a relative minimum then A(&;) = =2 and &; = 1; = w;44;

(¢) the function A4(4) is strictly decreasing in band-gap 0 and strictly increasing
between a relative minimum and a relative maximum, while it is strictly increasing
between a relative minimum and a relative maximum.

If 2 € A4\ {0}, the solution (4, ) is unbounded as * — +oo or as & — — oo, while
it is bounded for any « if, and only if, / € {g}.

Let us consider the A plane, we call I';-curve [4] the i-th curve in the complex
plane 4\ R where Hill’s discriminant is real. The I';-curve crosses the real axis in &;
and approaches the vertical asymptote Real{l} = (in)?, where i = 1,2, .... Then
Hill’s diseriminant is real if A € R or if A belong to I'-curve, where I'-curve denotes
the set of all I';-curves.

4 - Direct scattering theory

4.1 - Jost’s functions

Let us now consider a photonic crystal with impurities, where both Q(x) and n(x)
have a periodic component and a component describing the effect of impurities. In
this case we have the equation

(4.1) —y/" () + [Qo@) + Qu@)ly (4, x) = Jmo@)*[1 + e@)ly(Z, ),

where Qo(x) and ny(x) are assumed to be real piecewise continuous periodic functions
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of period p, &(x) is piecewise continuous and vanishes as ¥ — =+ oo, the lower bound
inf{e(x) : ac € R} > —1 and Q;(x) is a Faddeev class potentlal (i.e., Q;(x) is real and

satisfies f (1 + |2)|Qi(x)| de < o). We also assume that f (1 + |xDle(x)] < oo

In thls context the Jost functions f; 2 play a very 1mp0rtant role. Indeed, the
Jost functions are needed to describe the asymptotic scattering effect and must
coincide with appropriate 7; 2-periodic solutions vy, , for large |x| if the impurity
is confined to a bounded region. To analyse these solutions let us first consider
the two 7 2—periodic solutions y, 5 of (2.1) satisfying y;(4,0) = y3(4,0) = 1. Then

(4.2a) vy ) = 002, %) + my (DG, ),
(4.2b) Wy 1) = 002, %) + ma(g(, @),

where m;2(/) are called Weyl coefficients and 0(4,x) and ¢(4,x) are the Floquet
solutions.

Unlike 0(4,x) and ¢(4,x), the functions y, 5(4,x) are independent of the initial
conditions 3.2. The Weyl coefficients can be calculated by considering the Born-Von
Karman condition in the form

(43) (TLz—G(}»,p) —¢(4,p) >< 1 ) B (0)
' —00,p)  Te—¢Up ) \miad))  \0)
from which
— 00,
(4.4) m““)nimiﬁm’

where 1 2 are defined by equations (3.10) and (3.12). The solutions y/, » can be written
according to Bloch’s description:

(4.5) 0k, ) = eiikxh,z(/l, ).

Recalling that for 4 € C\ {o} we have Im{k} > 0 and that y, , are periodic func-
tions, we can easily prove that w, (4, x) diverges as  — — oo and (4, x) diverges as
x — + oo. Thus if 2 € C\ {o} we have y; € LA(R") and y, € L2(R"), that is:

+o00 0
(4.6) J (A, 2)Fdee < oo and J o4, )| dae < oc.
0

—00

In the next part we shall consider all functions to depend on k instead of 4, ac-
cording to formula (3.9). If we consider functions depending on k£ we can interpret
solutions of equations (2.1) and (4.1) as waves.

Since the Jost functions are solutions that must converge to 0 as x — 4 oo, we can
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set
(4.7a) filk,x) =y (k,x)[1 +0(1)], x — + 00,
(4.7b) falk,x) =wo(k,2)[1 4+ 0(1)], x — — 00.

To calculate the Jost functions we use the method of variation of parameters. To do so,
let us write the Schrédinger-Helmholtz equation with impurities in the following way:

(4.8) —y/"(k, ) + Qo@)w(k, x) = Imo(@)*y(k, ) + g(x),
where
(4.9) g(@) = [my(x)?e(x) — Qi(@)ly(x, k)

Writing the general solution in the form

(4.10) y(k, ) = c1(@y (k, x) + ca(@)yy ke, x),

by the method of variation of parameters method, we obtain
yrlk, ) ok, @)\ (ci@)) 0
yik, ) yhlk, @) )\ chl) —g() )

1 x
() = o+ J wolle, D9(0) dt,

—00

Then

1

w ) w1k, Dg(t) dt.

ca(x) =co +

83

Substituting them into equation (4.10),

1 x
wk,x) = |:Cl + m J wo(k, Dg®) dt] wi(k, )

—00

(4.11)

1 o0
+ [CZ + M J w1k, Dg@t) dt] wo(k, ),

where the constants ¢; and ¢y can be calculated by recalling that the solution must
converge to y; o(k, &) as € — £ oo if the impurity is confined to a bounded region.
Considering

(4.12) lim y(k, @) = yy(k, @),
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we have ¢o = 0, so that

lim ylk.) = |+ j wolle, Dg(t) dt |y, (k. ).

(k)

=1

Adding and subtracting (ick) 2) TW2(k t)g(t) dt to equation (4.11) we get
N J alle, 090t |y, )
=1
D [yt gyt + P [y, gy

from which

+00
(4.13) wlle, ) = o (k, ) + J yq(k, t)t//z(k,xivzkzzfz(k, . (k, x)g(t) it
In the same way, using the condition
(4.14) im y(k,x) = yolk, @),
we obtain .
(4.15) wik, ) = wy(k, x) — J vak, Dy, %fﬂ’ v 2) 0y .

Defining by A(x, t; k) the integral kernel of the above equations, that is putting

wi(k, Dwo(k, ) — wolk, Dy, (k, )

(4.16) A, t:k) = s ,

we can write the solutions in the following way:

w(k, ) + | A, t; k)g(t) dt ifwlir+n wik,x) = y,(k, ),
w(k,x) =

walk,w) — | A, t:kyg®)dt i lim yk,2) = ok, ).

]
|
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The Jost functions fi 2(k, x) satisfy conditions (4.12) and (4.14), so we can write

(4.172) fill,@) = ) + | Al e, 0)| i (0e(t) — Qu(O)| . ),

(4.17b) falk, ) = wolk, o) —

— n re—3

Allse,0) | 7mo(t7e®) — Qu(0)| foke, D d,

8

or

oo

filk, 2)= {1 0t e, )06 — Q0 itk & dt} vl @)

X

(4.18a)

+ |0 [0 - Qud)] itk dt] ke, ),

Folk, )= (k) ! J vk, ) [ﬂ,m)(t)ze(t)—Qi(w}ﬁ(k,t)dt] v (k)
(4.18b) N o

+ [1 = w(k)*lj vl ) imo®Pe(®) — Qu(t)] fall, ) dt} wa(k, ).

Letting x— =+ co we obtain:

4.192) fi(k,x) = ar1(k)yq(k,x) + b1 (k)ws(k, ) + 0(1), x — —o0,
(4.19b)  fa(k,x) = ba(k)y (k, %) + az(k)ws(k,x) + o(1), x — 400,
where

@200 ) =1 -1k | ol )20t — Q)| Fick. ).
(4.200) by () = w(k) ™ j (k.0 Zno(ePe(t) — Q)] Alk, Bt
4200 ax®) =1 =™ [ yalle) [ina(®et) - Q)| fck. 0

(4.20d)  ba(k) = w(k)™ J y1(k, 1) [Mo(t)ZE(t) _Qi(t)}fZ(k;t) dt.
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Finally, we can write all asymptotic expressions for the Jost functions

(4.21a) filk,x) ~y,(k,x), x — + o0,
@21b)  filk, ) ~ ay (o, (k, @) + by ootk ), & — — oo,
(4.21c) folk,x) = bo(k)w,(k, x) + as(k)ws(k, x), x — + 00,

4.21d) falk,x) ~ wo(k,x), £ — — 00.

Considering equations (4.6) and equations (4.21) we can observe that fi(k,x) is
bounded as ¥ — — oo if and only if a,(k) = 0. In the same way we see that f>(k, x) is
bounded as x — +oo if and only if ag(k) = 0. Finally, we have bounded solutions only
for the k-values that are zeros of the functions a; (k) and as(k). These k-values are the
discrete eigenvalues inserted into the band gaps by impurities.

4.2 - Symmetry

Let us consider 4 € C. We analyse symmetry for the principal functions de-
pending on 1. From equation (2.1), replacing 1 by its complex conjugate / we have

/" (2, %) + Q@)L x) = In(@)*y(, x).

If we conjugate the previous equation and recall that Q(x) and n(x) are real we have

—y"(, ) + Qw2 x) = In(x)*y(, ).

Then w(Z,2) = w(4,x) is a solution of the Schrédinger-Helmholtz equation. Clearly
we have

(4.22a) 0(2,x) = 0(A,x), 0(x) =01,

(4.22D) o) = ¢(x),  Pa) =¢(ha).

According to equations (4.22) it is possible to derive symmetry relations for Hill’s
discriminant:

(4.23) AG) = AQ2)
According to equations (3.10), if A1¢ {¢} we have

(4.24) aD =10,  wl) =),
while if 1 € {¢} we have

(4.25) 71(2) = 12(A).
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From Firsova’s formula (3.9) it is easy to prove that
(4.26) k) = —k(Q).

Let us now study symmetry properties of y; 5(k, ). According to equations (4.22)
and 4.26 we have

1ok, @) =y (k(A), @) = yy 5(k(2), ) = yy o — K(2), %) = w1 9( — K, ).
Considering now k € R, from equation (4.2), we can write

l/’l(;Li x) = 6(}'7 x) + ml(i)¢(ia 90)

=00, x) + (4” ;(f(;;p )) #(4, %)

B e~ kr — (), p))
— 00, 2) + <¢ Gy )8

Conjugating the equation and replacing 4 with 1, we have

— — tk(?)p_ ]
IR T L ) Py =)
&(1,p)

If we consider k € R or, equally, 1 € {o}

— e — 0, p)
wi(,x) =04, x) + (W) (4, %)
B 0 — 0(4,p)
=0, %)+ (7¢(i,p) )cﬁ(},, x)
= V/Z(l, '//U)
we get
w12(— k)
4.21 k) =4 "~
(4.27) w12k, %) {l//z,l( ko). keR

Considering the previous relations and equations (4.18) we can write

fio( =k, @)

(4.28) Siolk, ) = {
fi(—k,x), keR.

To study symmetry properties of a;(k), as(k), b1(k) and bya(k) we introduce the op-
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erator W which evaluates the Wronskian of a pair of functions:

f,) gk,
WLFGe gk = | i e s
We also get for the Wronskian
w(k) X Wy (k, ), walk, ) = WIOG, ) + ma (DA, -), 0k, ) + ma(Dglk, )]
(4.29) = {ma(2) — miDIWIO(, ), $(2, )]

= mg(4) —m1(4).
By the inversion and conjugation symmetries (4.27) we get

W[I/IZ( - ka ')7 l//l( - ka )] - _w(_k), k € R,

(4.30) (k) = Wiy (k, ), ok, )] = { ) ) _
Wiy ( =k, ), wo( =k, )] = w( — k).

With the help of equations (4.21) we find
WAk, ), folk, )] = Wiy, bayy + agps] = ag(k)w(k),
= Wlay; + biys, ol = ar(R)w(k),
so that

(4.31) alk) ' a(k) = axk), keC.

Using the symmetry relation (4.28) we obtain

so that

(4.32) a( — k) = ak), kecC.
Let us now look for relations involving b;(k) and bs(k). For k € R we have
W[ﬁ(k7 ')7 fl( - ka )]

W[l//l(k7 ')7 l//l( - k; )] = W[l//l(k7 ')7 I//Z(ka )] = w(k)7

Wlai (K, (k, ) + bi(k)we(k, ), a1( — By (= k, ) + b1( — k)wo( =k, )]
= Wla1 (R (k, ) + bi(k)ws(k, ), a1( — k)oK, ) + bi( — Ky (k, )]

= {a1(k)ar( — k) — b1(k)b1( — k) yw(k),

and hence

(4.33) aB)ar( — k) — bi)bi(—k) =1, keR.
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Similarly, for £ € R we have

Wlyo(k, ), yo( =k, )] = Wlys(k, ),y (k, )] = —w(k),
Wlas(k)ys(ke, ) + ba(k)yy(k, ), as( — k)yo( =k, ) + bo( — )y, (= k. )]
= Wlaa(B)yo(k, ) + ba(K)yy (, ), ae( — By (&, -) + bo( — K)o (K, )]
= —{az(k)az( — k) — ba(k)ba( — k) }aw(k),
and hence
(4.34) as(k)az( — k) — ba(k)ba( — k) = 1, keR.
Analogously, for k£ € R we have
WA, ), fo( =k, )]
Wiy (k, ), ae( — Ky =k, ) + be( — Ky (= k, )]
Wiy, (k, ), a2 — kw1 (k, ) + be( — ko (k, )] = bo( — Kyw(k),
Wlar(B)y(k, ) + bi(R)wo(k, ), wo( — K, )]
= Wlar(B)yy(k, ) + b1(R)wo(k, ), w1 (k, )] = —bi(R)w(k),

which implies

(4.35) bo(— k) = —by(k), kel

For k € R we can now write b(k) % b,(k) = —bs( — k). We do not define b(k) off the

real line. Using (4.28) and (4.29) for k € R we get for k € R
b(—kyw( —k) = —W[fi( = k,x),fo( = k,2)] = b( — k)w( — k),

which yields
(4.36) b(— k) = bk), keR.

Finally, considering equations (4.32), (4.33) and (4.36) we get for k € R the crucial
relation

(4.37) lak)? — b)) =1, keR.

4.3 - Scattering matrix S

Let us consider coefficients d;;(k) (¢,j = 1,2) such that
(4.38a) Ni( =k, x) = du(k) filk, ©) + di2(k) fo(k, ),
(4.38b) fo( =k, ®) = dn (k) f(k, ©) + doa(K) folk, ).
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Writing the asymptotic expressions (v — + oo) for v, » we get

y1( =k, ) = din(kyy (b, ©) + diz(B)[ — b( = k), (k, x) + ak)y,(k, ©)],
a( — k(= k,2) + b( = Byy( — k, ) = du(®)lalky, (k, ©) + by, (k, )]
+ di2(R)ya(k, ),
—b(Ryy (= k,®) + al — B)ya( — k, ) = da1(k)y (k, x)
+ doa ()] — b( — k) (k, ©) + a(k)yyk, ©)],
o =k, ) = dz (), (k, ©) + b(k)wak, )] + deo(k)y(k, ).

Using that y; 5( — k, %) = w5 (k, x) and using the linear independence of the Floquet
solutions to equate coefficients of v (k, x) and y,(k, x) we get

0 = dy1 (k) — diz(k)b(~k), 1 = dyz(k)a(k),
b(=k) = du(k)a(k), a(—k) = du(k)b(k) + diz(k),
a(=k) = da (k) — da2(k)b(—k),  —b(k) = dx2(k)a(k),

1 = di (k)a(k), 0 = da; (k)b(k) + dpz(k)

Therefore,

dntk) dik)\ 1 (b(=k) 1 e R
du(k) depk) ) ak) 1 ~bk) )’ ’
We now define the transmission coefficient T'(k), the reflection coefficient from
the right R(k), and the reflection coefficient from the left L(k) as follows
1

Tk) = dia(k) = do1 (k) = ad)’

b(— k) B k)
“alt) L(k) = —da(k) = at)’

(4.39)
R(k) = —dn(k) = —

where k € R. Then (4.37) implies that the scattering matrix is

< T'k) R(k) ) ,
(4.40) S(k) = . keR,
LGk Tk)

that is the matrix characterizing the primary scattering parameters. According to
relations (4.37), (4.39) and (4.40) we can show that S is unitary. All of these facts lead
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to the Riemann-Hilbert problem

(4.41) RN swr (P50 ker,

where J = diag(l, —1). From (4.32), (4.36), and (4.39) we get for k € R

(4.42) T(—k)y=Tk), R(—k)=R(k), L(—k) = L(k).

4.4 - Period map

Let us now introduce the period map, i.e. the matrix operator that allows us
to obtain the solution at any location in the crystal by analysing only one period.
Let us consider an unbounded mono-dimensional photonic crystal under the
hypothesis of a linear, stationary, isotropic and lossless medium (n(x) € R and
Q) =0). Let n(x) be a piecewise constant function, so that we can write
nw) =mn; (b1 <wx<b;, j=1,...,m). Here 0=by<by <...<by=p and
a;=b;—bj1 (j=1,...,m). Then any solution y;(4,x) of (3.1) on (b;1,b)
satisfies

sin (njvA (@ — bj_1))

4.43a (A, 2) = ¢y c08 (MA@ — bi_1)) + ¢35 ,
( ) w4, x) = ¢y (.7 ( j 1)) 2j nj\/z

(443b) w0, @) = —niVicysin (m;vV @ — bj_1) + ¢y cos (VA (x — bj_y)),

wherej = 1,...,m. Therequirement that w(/, x) is C* at the points by, . . . , b,,_; leads
to the identities

y(2,b ) (2, b;_y)

y'(2,b] ) y'(2,b; )

. sin (n;_1a;_1 V4
¢ cos (nj_1a;_1V'2) %}1) C1j-1
= i—1V A .
Coj . ! C2j-1
—nj_lﬂ sin (nj_laj_lx//_l) cos (nj_laj_lx//_l)

or also

Let A;_1(4) be the matrix that links coefficients belonging to (j — 1)-th and j-th in-
terval respectively. Then we can write
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Cim 5 Clm—1
( > = Amfl(/b) < )
Com Com—1

= A1 (DA 22 ( Cim-2 )

(4 44) Com—2

— A1 (). As(DAI) ( Z“ ) .

21

On the other hand, w(/, x) is C! also in p, so that setting
()“7 ) 7
Pl ) = aua( o).
v (l,p) Com
we have

) 1.0)
(4.45) (W ]9>Amth%ﬂM.nAﬂDAﬂD<W( ).

w'(4,p) w'(4,0)
1)

We define M(A) as the period map. Since equation (2.1) is a second order linear
ordinary differential equation we can write

w4, @) = c140t 04, %) + Ca 0t (4, X),

pG,o)\ [ 02 ¢, x) (Q,m)
w'(4,x) B 0G,x) ¢(,x) ) \ Cot '

By substituting into equation (4.45) we get

0, 2, 00,0 2,0
.46 ( (4p) ¢ p)) =M(/1)< (2,00 ¢( )) Mo,

or

0',p) ¢4, 02,00 ¢'(2,0)
From the preceding equation we can obtain the following relationship
(4.47) AR = 00,p) + ¢ (4, p) = Tr M(2),

where T'r stands for the matrix trace. The behavior of Hill’s discriminant A(/), in the
particular case of a piecewise constant case with m = 2, is depicted in Figure 3.
Using the function 4(1) we can evaluate the allowed and forbidden bands.
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Hill's discriminant
15 T T T T T T

10

R 1 2 3 4 5 6

Fig. 3. Hill's discriminant if n(x) is piecewise constant. n; = 3, n2 = 1, a; = 2 and ag = 1. A1)
is unbounded as © — — oco. Relative maxima and minima are labeled as ¢ * .

In the piecewise continuous case it is clear that the period map M(A) has the
following property

sin (n;a; V)

1 :
(f ?)M(z)(ﬁ 0): I1 cos (nya; ) ;
0 1/ F=mmbed\ _yyssin (njaiv/A) - cos (njaiv/A)

We can observe that this matrix has determinant 1 and its entries are almost periodic
polynomials in v/Z. The diagonal entries are even real functions of /2 and the off-
diagonal entries are odd real functions of v/ vanishing at v/4 = 0. Let us write

K =mnja; >0 and z = V//.

Then we can introduce the modified period map M(z) as

4.48 me—[F Nup(? °
(4.48) “=\o 1 No 1)

More precisely, we can write

c0s (102) sin (ujz)
Mo = ] e "

gmmm=L I\ —n;sin (z)  cos (u;2)
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If we take a homogeneous medium with refractive index 7, and consider the period” p

sin (,ujz)
M) — cos (ujz) T

—n; sin (ujz) cos (,ujz)
Considering a crystal with 2 different media with refractive indices n; and ng.

Respectively, we have the following modified period map matrix

1 1 )
(1 + Z—;) 08 (g + 1)) (nT + n—z) sin (y + )2)

1 1) .
. + (1 - Z—;) cos (1 — 12)?) + (n—l—n—z) sin (g — p)2)

—(n1 + ng) sin (1 + u2)2) (1 + Z—?) cos (1 + p42)2)

—(n1 —m2) sin ((1y — up)2) + (1 —Z—?) cos (1 — u2)?)

We can now generalize the modified period map for a crystal with m different media
with refractive indices nq, ng, . . ., .y, respectively, by writing

Mu@) =+ ¢, cos(ou + 02tz + ...+ Onit,,)2),
o=1

M@ =+ ¢, . sinoy + o2tz + ...+ Gupt,)2),
a1=1

MG ==Y &,  sin(oyy + o2ty + ...+ 0uit,)2),
o=1

M@ =+ &, cos(o + sty + ... + Onht,)2),

a1=1

where we sum over all (o2, . .., 0,) € {—1,+1}" . The entries of the previous ma-
trix are almost periodic functions [1]. For an almost periodic function

¢t =) e,
J

where y; are distinct real numbers and the set of Fourier coefficients {¢; } is bounded,
we define the Fourier spectrum as the set of those real numbers u for which the

" For a homogeneous medium the choice of the period p is arbitrary.
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related coefficients

T
def 1. 1 it
= 1 — " dt
C('U) Tjrfm 2T J f(t)e d
-T
are # 0. The Fourier spectrum of an almost periodic function is an, at most coun-
tably, infinite subset of R. The Fourier spectrum of the entries of the product matrix
is contained in the set

m
{Z oinia; . 0; = :Izl},
=1

where zero may (resp. cannot) belong to the Fourier spectrum of the diagonal (resp.
off-diagonal) entries. Thus the Fourier spectrum has at most 2™ points and its
maximum is z + ... + g,,. Among the above Fourier coefficients we have the re-
currence relations®

ol _ 1 11 + 1 pral
O1yesOm-1,£1 7 2 T15.,0m—1 znm 014017
1 1
22 _ L 2 1L 12
Cle><-7air7—17i 1 2 CJlr-wgm—l :I: 2 n"ncalymagm—l :
In the same way we derive the recurrence relations
12 _ l 12 1 22
O1yeesOm-1,£1 2 G15-30m—1 2”111 01,-,0m—1"
1 1
21 _ Lt 1 11
C”lsw-,”m—lail - 2Cf7'1,<---,(7'm—1i znmcﬂ'l ----- Tm—1
In general,
11 12
def Cal.,...,am Cal,“..am
C =
T150..0m 621 C22
O15..,0m T15--,0m
(4.49) o o o1
1 1 m 1 = 1 =
= (o N2 m
o T ...
Oy 1 oong 1 ony 1
8 Here we used 2cosacosf =cos(f+a)+cos(f—a), 2sinasinf = —cos(f+a)

+cos(f—a), 2sinacos f = sin(ff + a) — sin (f — a), and 2 cos a sin f = sin (f + a) + sin (f — a),
where a = p,,z and f = (u; + ... + fy,_1)2.
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By induction on the number of factors we can easily prove that

11 21

c c C C
O1550m __ ~O1ys0m O150m __ ~O1ys0m
(4.50) 021 = = 01N, i = 021 = OpNpy.
O1;--:0m O1;--:0m O15--+:0m O1;---:0m
Lemma 4.1.
Co1,Gisom T €01 ci=01 iy = €011 1,0141 T

Proof. Itis easy to prove the preceding relation using the formula (4.49). O

4.5 - Recovering the period map from the scattering matrixc

In this section we indicate how the period map of the periodie-plus-impurity
problem can be recovered from the scattering coefficients a(k) and b(k). We shall
restrict ourselves to the piecewise constant case, although the reduction of the
scattering coefficients to the period map goes through in general.

As the periodic part we consider Qo(x) =0 and ng(®) =n; (bj—1 <x <b,
Jj=1,...,m).Here0=by < by <...<by=panda; =b; —bj1G=1,...,m). The
impurity consists of defining Q;(x) = 0 and

N;/n), by <w<b,j=1,....m,

1 =
oo {o, 2¢10,pl

Now let us define M;(4) as the matrix M(4) in the period with impurities with 7;
replaced by N; (j = 1,...,m).” Then outside the interval [0, p] the Jost solutions can
be expressed in the Floquet solutions as follows:

l/ll(k>x)7 X Z p7

filk, ) = { akyy,(k, ) + bk)ys(k, ), x <0,

fz(k x) = { _%V/l(k,%) + Ob(k)l/jz(k,x), x> P,
| velk, ), <0,
Putting
(4.51) Wi, z) pi(k,x)  wolk,x)
| ’ vk, ) whlk,w) )’

% We could just consider any periodic and periodic-plus-impurity problem, because we
only need to work with the period maps M(2) and M;(4).
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we obtain
a(k) ik, 0) . (ﬁ(km))
Wk, 0 - — M,
&, )<b<k>) (f{(k,o)) Dk
vk p) (k. 0)
= M,() 1(‘”1 ):sz Y ( 1 )
Dty ) =MD MO o)
and

= B . p)
W(k,0)< “’”) =M(z>-1W(k,p>< WC)) — MGy (fz P )

_ Sa(k, 0) ~ wo(k,0)
= M) M;(2 = M) M0 ,
) <A)<fz,(k70)> (D~ Mi( ><W,2(k70)>

As a result of w(k) = ma(1) — my(A), wy(k,0) = yy(k,0) = 1, v/, (k,0) = my(2), and
wh(k,0) = ma(2) we get

al)\ 1 [ ma() 1\, 1
(4.52a) <b(k>)‘w<k><—ml<z) 1>M“) M(’D<m1(i)>’

@) _ L [ med) 1\ oo 1
N ) R e O )

Equations (4.52) allow us to compute the period map M;(4) of the periodic-plus-im-
purity problem if the impurity is concentrated in one period, the periodic data are
known, and a(k) and b(k) are known. The latter scattering data can easily be com-
puted from one reflection coefficient and the transmission coefficient by using (4.37)
and (4.39).

More generally, let the impurity be concentrated in [ — Mp, Np], where M is a
nonnegative integer and N a positive integer. Then fi(k, x) = w,(k,x) for x > Np and
Jolk,x) = wok,x) for « < —Mp. Now let M;. (1) be the period map of the periodic-
plus-impurity problem for computing solutions at x = Np from those atx = 0, and let
M;_(2) be the period map of the periodic-plus-impurity problem to compute solutions
at © = 0 from those at « = —Mp. Then

ak) fi(k,0) 5 <f1(k, Np>>
Wk, 0 = =M; (4

&, )(b(lc)) (f{(k, 0>) +4) fl(k,Np)
w1 (k, Np)

= M; /11<
+4) v, (k, Np)

) - MH(A)IM(@N( 1150 >

'y (k,0)
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and

—b(k) N —b(k) N (fzac, Np))
Wk, 0 = M) YWk,N -M /
( )( a(k)> ) NW( p)( . (k)> % £k Np)

= MG N M, )M, () (fz(lc, —Mp) )

wo(k, —Mp)>

= MO M, (DOM;_(. (
o)) +(DM;—(D) (e, —Mp)

= M) N M (DOMi_()MG)™ ( yo(k,0) ) .

wy(k,0)

Instead of (4.52) we now get

(4.532) (“(k)) 1 ( ma () _1>Mi+(x)1M(;L)N<

b)) wl\ —mi() 1 m1u>>’

~bk 1 ma(4) —1 -N , mf 1
(4.53b) ( 2&’8) :M< e >M(/1) M, (DM (DM () (mz ( A))'
Equations (4.53) allow us to compute the period maps M;, (1) and M;_(A) of the
periodic-plus-impurity problem if the impurity is concentrated in finitely many
(known) periods, the periodic data are known, and a(k) and b(k) are known. The latter
scattering data can easily be computed from one reflection coefficient and the
transmission coefficient by using (4.37) and (4.39). Let us write N(J) = M NIM(O)
as in (4.52a). Then

) = — ([mzw ) N () — Nas)] — Nox(h)
w(l) 2

(4.54)
+ ma(A)m1(AN12(A) + [mz(4) — m1(4)] % [N11(4) + sz(xD]) :

Now for A1) ¢ [ — 2,2] we have

W) = ma) — () = 210

- ¢Gp)
A(L) — 2002 () e
Mo () + my () = (/DW Z() ) _ 0, sz p@)(/n, 0]

w(D)t1(2) — [12() + 11()10C, p) + 00, )

¢, p)y°
_1-1[00,p) + ¢ p)OG, p) + 00, p° _ 0'(,p)
B 80, p)’ T 0.

ma(ma(4) =
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Consequently,

(w2, p) = %[N 11(4) + No2(DJw(DP(4, p) — Na1(D(4, p)

(4.55) ;
+35 [N11(4) = Noo(DI[F' (4, p) — 0G, p)] — N12(D)O' (4, p).

5 - First results on the identification of the refractive index

In this section we propose a method to determine the refractive indices 7; and the
layer amplitudes a; knowing the period map, in the piecewise constant case when
each crystal period is made of two or three different materials with constant index.

This kind of heterostructure is generally made of no more than three layers per
period [7], [14]. An example of periodie structure with period p in the case of pie-
cewise constant refractive index is depicted in Figure 4.

5.1 - Piecewise constant with two different materials

Let us consider a crystal where in each period there are two different media with
refractive indices 7y and ng, respectively, where ny # ng (the n; = ng case is trivial).
We can evaluate n; and ns by equations (4.50):

11 21 11 21

T e e -
12 T 22 a2 o2
L I

bl 0 bl b2 p p+bl  psb2 2p 2psbl 2psb2 3p 3pibl

Fig. 4. Example of a periodic structure with period p in the case of a piecewise constant
refractive index.
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and
21 22 21 22
T e
Al gz Al gz
TR it il

Setting (1,00 = 14 + 15 the maximum of the spectrum, we can calculate the layer
amplitudes by solving the following system:

n101 + N2l = K,
51 max
(5.1) { ar+azg=p.

5.2 - Piecewise constant with three different materials

Let us now consider a crystal with period p where each period is made of three
different materials with refractive indices 71, ne and ns. If n; = n; for i # j we have
the preceding case, so we consider n; # n; for ¢ # j.

As in the previous example we can evaluate the refraction indices by using the
following formulas

11 21 21 22
Oy _ Gt _ Crie _ Gy

12 22 [2F iz s
¢ ¢ ¢ ¢

e Oy ERIE Gt

Let us now consider the following inequality
0<'u'/3 S'u}’z g'u}’l’

where the set {y;, 75, y3} is one of the possible permutations of indices {1,2, 3}.
Let x,, be the minimal value of 4. Then the two largest numbers in the spectrum
are
Hopae = My + Hg + tg = My, +'u}’z +'u'/3

and
H= Hy, = oy = Mo = 24,
From lemma 4.1 we have
0‘771 Ty:073 + c”‘/l Ty =0y = c‘7>’1 O

where ¢, 1,1, and ¢1, 1, 1, are the matrix Fourier coefficient matrices evaluated
in @4, and g, respectively. ¢,, ., is the matrix of Fourier coefficients of a “virtual”
crystal made up of two layers with refractive indices », and n,,, respectively, and
period a,, + a,,.

Let us calculate

c Cs g, =Cq, .
Ty Oy + Ty =0y [
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Then the matrix Co, is the matrix of Fourier coefficients of a “virtual” homogeneous
crystal made of a medium with refractive index n,, and period a,,.

Ifn, =mn; (n, = ng)theny; =1(y; = 3); otherwise (i.e., if n,, # n; andn, # n3)
the value of y; is 2.

Frome,, 1, we can evaluate n,, and n,, by using relations (4.50). Knowing y, we
can estimate y, comparing n,, with n;, nz and ng3; the value of y; is determined as a
result.

To calculate a;, az and ag we can solve the following system

n101 + Nlz + N3A3 = [lyqy
(5-2) Wy Qyy + My, @y, — N Ay = U
a1 +az+a3=p

and observe that in the second equation the indices {y, 7, y3} are known from the
previous analysis.

6 - Conclusions

In this paper, a complete characterization of mono-dimensional photonic crystals
has been given. We have calculated the solutions in a photonic crystal with and
without impurities. In particular, we have analysed a structure consisting of a finite
number of periodic layers with constant refractive index.

We have paid particular attention to the period map and determined the relation
with the scattering matrix and the scattering coefficients a(k) and b(k). We have
estimated the discrete eigenvalues introduced in band gaps by impurities.

Finally, we have developed an algorithm to recover the refractive index in the
piecewise constant case when each period of the crystal is made of two or three
different materials.

It is an open problem how to develop an algorithm for refractive index recovery
when each period is composed of more than three layers. Moreover it could be very
interesting to extend the formalism of Hill’s discriminant to determine band gaps in
a bi-dimensional or three-dimensional crystal.
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Appendix
A - Green’s function

The Green’s function represents the impulse response, i.e., the system output
when subjected to an impulsive signal. If the photonic crystal is excited by an elec-
tromagnetic wave f(x) we can write:

(A1) —y" (1, ) + Q) (2, ) = @)y (h, x) + n(x)*f (x),

where n(x) is a positive piecewise continuous function and Q(x) is a real piecewise
continuous function, both periodic with period p. For r € C with |z| = 1, we consider
the self-adjoint boundary conditions (3.3), where the solution is given by

P
(A2) w(,x) = JG(x, Y Dny)’f @) dy
0

and G (x,y; A) is the Green’s function of the system, that is

91, p$ (4, )85 (4, ) — $5(4, P)§1 (4, )¢ (4, )

- wltgy(2,0) — ¢1(2, p)]

n $1(4, )Po(4, )y (4, y) — Go(4, )y (4, )1 (4, )
wltgy(4,0) — gy(4, )]

G(x,y;4)
(A.32)

for0 <x <y <p,and
¢, (2, 008, (4, ©), (1, ) — $5(2, p)py (1, )y (A, )
wltd (4,0) — ¢ (2, p)]

" ¢ (4, P)Ps (4, )5 (2, ) — (4, 0)5 (4, )y (4, )
wltgy(4,0) — $5(4,p)]

for 0 <y < a <p. If f(x — xp) =@ — x9) we have w(4,x)=G(x, x; /l)n(aco)z.

Gx,y;4) =
(A.3b)

Proof. To derive the Green’s function we use the same method as used to
derive the Green’s function for the Sturm-Liouville problem. Let us assume that 4 is
not an eigenvalue of the differential equation (3.1) with boundary conditions (3.3).
Let ¢,(4, ) and ¢,(4, x) stand for nontrivial solutions of (3.3) such that

(A4) 810, = w,(,0), (4, p) = t84(4,0).

Then their (constant) Wronskian w is nonzero. We choose ¢, (4, x) and ¢,(4, x) as real
functions under periodic (r = 1) and antiperiodic (- = — 1) boundary conditions.
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Let us solve the differential equation (A.1) under the boundary conditions (3.3) by
the method of variation of parameters. Writing

(2, x) = c1(X)py (4, ) + c2(X) Py (4, 1),

we arrive at the linear system
$1(4, ) @4, @)\ [ cj(x) B 0
S He) )\ @ )\ —n@P@ )’
where the system determinant equals w. Then
<ca<x>>_1< 4,03 —qw,x))( 0 )
a@ /) W\-gGo GG )\ —n@?f@)
_n(ﬁﬂ)Zf (90)< $o(4, ) )
w - (hw) )

Thus there exist constants c¢; and ce such that

@) = %Jw, P @) dy + 1,
0

and

eo@) — f%jw, P ) dy + cz.
0

Then we can write

w(4, 1) = 19, (4, ®) + c2¢,(4, )

A %>J¢2<A e dy - 22 ”JW YY) dy.

0 0
Differentiating with respect to x we get from (A.5)
y'(2,%) = 18 (4, ) + cagy(4, )

(A.6)
G x)Jsbz( P dy - 2% m)J%(i Yny’f @) dy.

0 0
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Substituting (3.2a) and using ¢,(4, p) = 1¢;(4, 0) in (A.5) we get

TCZ¢2()V7 0) = 62¢2(/1,p) + ¢1(i p)

J¢2< ) dy

0

%U P Jw PR @) dy.

0

Similarly using (3.3b) and ¢,(4, p) = 1¢5(4,0) in (A.6) we get

(4 )’ ) dy

18,0, 0) = erdl (G, p) + AL ”)J

0

¢2(} . J 10, ymy)’f () dy.

0

We now compute the constants ¢; and ¢ and substitute the resulting expressions in
(A.5). We finally obtain

¢1(/L }O)¢2(/L y) ‘?2(/1,}9)?51(;%?/)

2
d
W B0 = Ay T

w0, @) = 6,0, @ )J

P
¢, p)go (2, y) — $o(4, Py (4, 4)
+ ¢2(}v’ x) J‘ U)[T¢2(;L, 0) _ ¢2()L,p)]

n(y)*f () dy

LA x)Jsbzu PP dy — 2% x)J

0 0

(L @) @) dy.

If we use the Heaviside’s function'® H(x — ) we can write all integrals as integrals
on [0,p]:

10" Heaviside’s function or step function 6_;(x) is defined as:

0 < 0,

H(x)=0_1(x) = {1 2> 0
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P
o [0S y) — O PELy) o
Ax) = d
y(, ) = ¢ (4, x)l W d .0 — & G p)] ny)yfy) dy
p
(4, P¢a(2, ) — (4, )1 (4, y) 2
A
+ w)! e Dy dy
P
— (4
0
Hence, introducing the Green’s function, we obtain the equation (A.2). O

A.1 - Selfadjointness property

The Green’s function also satisfies the selfadjointness property™
(A7) G, y; 1) = Gy, ;7).
Let us now differentiate G(x, y; 1) with respect to x. We get
3G _ 41, pG (G, )y (L y) — 650, PG (A, )8y (4, )
ox wltgy(4,0) — ¢, (2, p)]

+ ¢1 (}V7p)¢l2(}7 x)¢2(;“a ?/) - ¢2(/1v p)¢/2(/la x)¢1(]*7 ?/)
wltgy(4,0) — ¢,(4,p)]

(A.8a)

for 0 <x <y < p, and

9G _ 41, 081, 0)$,( y) — ¢4 )1 0, 006 (o y)
ox wltgy(4,0) — ¢,(4, p)]

n 61 (4, D), )9y, y) — 154, 05 (2, ) (1, )
wltgy(2, 0) — $5(4, p)] ‘

(A.8b)

For 0 <y <« <p. Then

0G, . 0G
(A.9) %(x,xj,) a%(ac,ac,/l)—l.

I This property holds, because for / € R the Green’s function G(x, y; A)n(y)? is the real
integral kernel of an integral operator that is the inverse of a selfadjoint operator on
L2((0, p); n(x)?dx). A general direct proof can be found in [16].
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Abstract

In this article we introduce a mathematical model to describe light propagation in o
mono-dimensional photonic crystal under the hypothesis of a linear, stationary, isotropic
and lossless medium. We study the typical band structure and spectral properties. In ad-
dition, we analyse a crystal with an impurity confined to a bounded region and study the
change i its spectrum as a result of introducing the impurity. The asymptotic expressions
for the solution of the Helmholtz-Schrodinger model equation with impurity are analysed to
derive the scattering matrix. We introduce the period map matrixz and derive it from the
scattering matrix. We pay particular attention to a photonic crystal with a piecewise constant
ndex of refraction and recover it from the scattering matrix in a few important special cases.
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