UCSB

Hybrid III-V Silicon Quantum Dot and Quantum Well Lasers

John Bowers Director, Institute for Energy Efficiency University of California, Santa Barbara <u>http://optoelectronics.ece.ucsb.edu/</u>

UCSB: Jared Bauters, Dan Blumenthal, Daoxin Dai, Mike Davenport, Art Gossard, Martijn Heck, Jared Hulme, Alan Liu, Jon Peters, Daryl Spencer, Sudha Srinivasan

SLIDES:Arai, Arakawa, Baets, Fang, Gaeta, Inoe, Kippenberg, Koch, Krishnamoorthy, Liang, Paniccia, Roelkins, Vahala, VanThourhout, Yariv

Research supported by Josh Conway and Jag Shah at DARPA MTO, Intel, Google, TE Connectivity, HP, Aurrion

Outline

- Silicon Photonics
- Lasers on Silicon
- Quantum Dot lasers
- Tunable Lasers
- Integration with Electronics
- Commercialization
- Future
- Summary

UCSB What is Silicon Photonics?

- Making photonic integrated circuits on Silicon using CMOS process technology in a CMOS fab
- Merging photonics and CMOS

UCSB What is Silicon Photonics?

- Making photonic integrated circuits on Silicon using CMOS process technology in a CMOS fab
- Merging photonics and CMOS

The issue is not InP or GaAs versus Si. The issue is not VCSELs versus PICs The issue is

- Scaling photonics to high levels of integration with improved performance and better process control at low cost.
- 2) Wafer scale testing
- 3) Low cost packaging
- 4) WDM and scaling to >1 Tb/s
- 5) Solving electrical interconnect limits in Data centers, Supercomputers and ICs with higher capacity, lower cost optical interconnects

Chip I/O bandwidth requirements

- Scale-out of Engineered Systems hinges on off-chip IO
 - Future projections of 100Tbps of Off-Chip BW
 - Pin-growth at a different trajectory drives (40+ Gbps data rates)

Approved for public release. Distribution Unlimited

Why Silicon Photonics?

- Integrate photonics with electronics
 - Same wafer
 - Bump bonding of silicon PIC with silicon IC
 - Same coefficient of thermal expansion
 - 3D stacking

Cross-sectional view of an IBM Silicon Nanophotonics chip combining optical and electrical circuits Vlasov et al. IEDM postdeadline

- Reduce cost by going to larger diameter wafers (300 mm)
 - InP limited by wafer breakage to 100 mm diameter
- Reduce cost by sharing VLSI facility with electronics
- Improve yield by taking advantage of silicon process development
- Volume driver: Solve IC interconnect bottleneck (from 4 Tbps to 1 Pbps). Embedded transmitters/receivers on processors, memories, switches (see Intel/Altera commercialization slide)

UCSB Bringing Si Manufacturing to the Laser

2014: Silicon Photonics Participants

Numerous Silicon Photonics Entrants Across Start-ups, Products, Foundries and Research

© 2014, Intel Corporation. All Rights Reserved

Needs

- What is needed is a photonics platform for interconnects and switching that is scalable to
 - Low power
 - High capacity
 - Low cost
 - High volume
 - High yield
 - High reliability
 - Focus here: Wafer scale. (bonding/soldering laser die, not considered)

UCSB Required Silicon Photonic Components

- Passives
 - Low loss waveguides
 - Splitters
 - Wavelength selective combiners/splitters
 - Isolators/Circulators
 - Comb generators
- Actives
 - Lasers (single frequency, tunable, mode locked)
 - Modulators
 - Switches
 - Amplifiers
 - Photodetectors

UCSB Superior Passive Si Photonic Devices

Si/SiO2 High index contrast:

- Small wires
- Small passive devices

Example of losses for high-indexcontrast "wire" waveguides:

 For 6.5 mm radius bends, losses are 0.0043 dB per 180° turn

Move to 193nm immersion lithography, 300mm wafers

Lower loss waveguides

More uniform channel spacing in ring demux

Also:

- < 0.15dB/cm loss in ridge waveguides</p>
- <2dB/cm loss in slot waveguides

S. Selvaraja e.a., OFC '14

UCSB Silicon Photonic Components

- Passives
 - Low loss waveguides
 - Splitters
 - Wavelength selective combiners/splitters
 - Isolators/Circulators
 - Comb generators
- Actives
 - Lasers (single frequency, tunable, mode locked)
 - Modulators
 - Switches
 - Amplifiers
 - Photodetectors

UCSB Silicon: Indirect Bandgap

UCSB Silicon light emission – How?

U An electrically pumped germanium laser

Rodolfo E. Camacho-Aguilera,¹ Yan Cai,¹ Neil Patel,¹ Jonathan T. Bessette,¹ Marco Romagnoli,^{1,2} Lionel C. Kimerling,¹ and Jurgen Michel^{1,*}

UCSB Theoretical efficiency of electrically pumped, strained Ge lasers[¶]

David C. Nielsen * and J. Scott Rodgers,2 ¶

¹Booz-Allen-Hamilton :3811-N-Eairfax-Dr.-Arlington :VA.:22203, USA ²Defense Advanced Research Projects Agency, 675-N. Randolph St., Arlington VA.:22203, USA ²<u>nielzen, david@bah.com</u>

Direct bandgap is essential

Heterogeneous Integration

Quantum Well (UCSB, Ghent, Caltech, Tokyo Inst. Of Tech, Intel, HP, Aurrion) Quantum Dot (Univ. Tokyo, UCSB)

Direct Gap III-V p contact p - InGaAs Silicon n contact p - AlGaInAs SCH

- Optical gain from III-V Material
- Efficient coupling to silicon passive photonic devices
- No bonding alignment necessary: suitable for high volume CMOS
- All back end processing low temperature (<350 C)

A.W. Fang, et al., "A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser," IEEE Photonics Technology Letters, 18 (10), 1143-1145, May 15, 2006

UCSBQuantum Well Epi on 150 mm Silicon

Oxygen Plasma Enhanced Molecular Bonding

Aurrion PIC Integration

Brian Koch et al., OFC Postdeadline 2013

aurrion

Heterogeneous Integration of 6 Photonic Platforms

GaAs

LiNbO₃

InP

SiN/SiON/SiO2

Heck et al. JSTQE 2013

UCSB Hybrid Silicon Quantum Well Lasers 105 C CW 1310 nm laser

Chang et al., Optics Express 15(18), 11466, August (2007).

UCSBDFB Quantum Well Hybrid Silicon Lasers

C. Zhang, et al. "Low threshold and high speed short cavity distributed feedback hybrid silicon lasers", Optics Express 2014

UCSB Aging of Bonded Devices: No threading dislocations

• Epitaxial growth on InP or GaAs followed by bonding to Si results in edge dislocations, not problem for laser lifetime.

High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms

Christos Theodoros Santis¹, Scott T. Steger, Yaakov Vilenchik, Arseny Vasilyev, and Amnon Yariv¹

$$(\Delta v)_{laser} = \frac{2\pi h v_o^3 \mu (1 + \alpha^2)}{Q^2 P}$$

High Q (1 million) 20 kHz linewidth

U 40-Gbit/s Direct Modulation of Membrane Buried Heterostructure DFB Laser on SiO₂/Si Substrate

Shinji Matsuo, Takuro Fujii, Koichi Hasebe, Koji Takeda, Tomonari Sato, and Takaaki Kakitsuka

NTT Photonics Laboratories, NTT Corporation

³⁷⁷ fJ/bit

Quantum Dot Lasers

Lower threshold Lower cost (epitaxial growth on Si)

Threshold Current Densities of Semiconductor Lasers

QD-lasers for lower power

III-V Laser Growth on Silicon

(Photo courtesy of Dr. Jordan Lang, Yale)

- CMOS processing of photonics is already happening, yet high cost and small size of III-V wafers remains an issue.
- **Goal:** Grow III-V lasers on larger and cheaper silicon substrates without sacrificing laser performance for <u>lower cost and higher throughput.</u>

UCSB III-V growth on 300 mm Silicon Wafers

GaP on 300 mm Silicon using MOVPE

B. Kunert *et al.* 69th Device Research Conference, Santa Barbara (2011)

GaAs on300 mm Silicon using MBE

Amy Liu, IQE Inc.

Low Thresholds

- Uniform threshold current densities across die/wafers.
- Low CW threshold (150 A/cm²)

Liu, Alan Y., et al. "High performance continuous wave 1.3 µm quantum dot lasers on silicon." Applied Physics Letters 104.4 (2014): 041104.

High Output Powers

- CW powers over 100 mW routinely achieved.
- Nearly 180 mW maximum CW single side output power at 20 °C from HR coated 1130x10 µm² intrinsic active region (undoped) device.
 - 33% differential efficiency and 18% WPE (at 150 mA)

- P-doping the active region improves thermal performance.[1]
- Continuous wave lasing up to 119°C
 - (dual state lasing at high currents/temperatures).

[1] Alexander, Ryan R., et al. "Systematic study of the effects of modulation p-doping on 1.3-µm quantum-dot lasers." Quantum Electronics, IEEE Journal of 43.12 (2007): 1129-1139.

UCSB

Reliability Studies of QD lasers on Silicon

- Lattice mismatch causes dislocations, which have limited quantum well laser reliability on Si.
- Over 2100 hours of continuous operation
- >26x improvement over best reported lifetime for GaAs laser on Si
- Not yet adequate for real applications

Heterogeneously Integrated Quantum Well Transmitters

Modulators Photodetectors Integrated Transmitters

UCSB Active Elements needed for PICs

- Range of components for PICs:
 - Lasers
 - Modulators
 - Amplifiers
 - Photodetectors
- Integration
- High yield
- Good reliability

DFB/EAM/PD Array

Optical preamplifier PD array

DQPSK Receiver

UCSB Hybrid Silicon Electroabsorption Modulator

UCSB Integrated Transmitters Using Quantum Well Intermixing

Tunable Lasers

UCSB Ghent

UCSB Widely Tunable Vernier Ring Laser

J. C. Hulme, J. K. Doylend, and J. E. Bowers, "Widely tunable Vernier ring laser on hybrid silicon," Opt. Express 21, 19718-19722 (2013)

III-V/Si extended cavity laser

III-V/silicon tunable laser

- 8nm tuning range, based on thermo-optic tuning of silicon ring resonator
- > 40dB SMSR
- threshold of 35mA
- 4mW optical output power
- co-integrated with 10G silicon electro-optic modulator
- •Realized in EU-project HELIOS (jointly with CEA-LETI, III-V labs)

Integration

2D Scanners Triplexers Buffer Memories Mode Locked Lasers

UCSB Fully Integrated hybrid silicon free-space beam steering source using a tunable laser phased array

2D Scanning with

- Tunable laser and grating for θ
- Phased array emitter for ψ

1 (wavelength)

4 tunable lasers, 32 amplifiers, 32 phase shifters, 32 photodetectors

UCSB Hybrid Silicon Triplexers (FTTH)

Chang et al. OFC 2010

40 Gb/s Optical Buffer Memory

Integration with Electronics

Co-processed (expensive) Bump bonded Inserted

UCSB Integration of DFB and EAM on hybrid silicon platform with Oracle ICs

Low power, high speed, integrated photonic transmitter based on hybrid silicon platform

- High capacity optical interconnects between processors and memory.
- Low power optical transmitters with high impedance modulators Flip chip bonding with CMOS driver chip

UCSB CMOS Integration in Photonic IC

CMOS Foundry Chips

- "Smart Photonics" Integrated electronic w/ photonic ICs
- Avoid driving 50Ω terminations
- Active feedback control

Hybrid Silicon PIC from Aurrion

L. Chen, A. Sohdi, J. E. Bowers, and L. Theogarajan, "Electronic and photonic integrated circuits for fast data center optical circuit switches". IEEE Communications Magazine . **Invited Paper.** Volume: 51 Issue: 9 Pages: 53-59. 5. September 2013

Commercialization

Aurrion Intel Hewlett Packard

Integrated Lasers

1.5 1.4

105C

1.3 1.2 1.1 1.1

0.9 0.8 0

III-V gain integrated on silicon waveguides High power/High efficiency

- ->25% at 30C
- -15% at 80C
- ->20mW

aurrion

Uncooled operation

- -Wavelength-locking across 20-80C) without a TEC
- -200GHz (or 800GHz)

100G PIC Links

Laser SpectrumTx Eye DiagramsImage: Construction of the product of t

aurrion

Aurrion Proprietary and Confidential

Rx Eye Diagram

Scaling to 400G+

- Uncooled 16x laser arrays on silicon demonstrated
 - Locked to 200GHz grid
 from 20-80C = no TEC
 required
- 3dB bandwith of EAMs
 & PDs >37 GHz
 - Supports 50Gb/s

aurrion

Integrated Transmitter Chip

Sept. 2014: Intel Developer Forum

- Arista: Showing Network Products with 100G Intel Silicon Photonics
- Advantech: Showing Network Security Appliance with 100G Intel Silicon Photonics
- Altera: Showing FPGAs with embedded 100G Intel Silicon Photonics
- Corning: Showing the breadth of innovative MXC optical cable technology, along with 100G Intel Silicon Photonics running over a 300m+ distance
- Fujitsu: Showing an Application-Optimized Server that enables pooled resources capability provided by Intel Silicon Photonics optical PCI
- Quanta: Showing a 100G TOR switch and server with 100G Intel Silicon Photonics
- **Tabula**: Showing a functional demo with 800Gbps of interconnectivity in one box, based on 100G Intel Silicon Photonics

UCSB Hewlett Packard: "The Machine"

"The Machine started to take shape two years ago...a new form of memory known as memristors and silicon photonics, the transfer of data inside a computer using light..."

HP's proposed silicon photonics would also be a big deal. HP, Intel (INTC), and others have been struggling to shrink speedy fiber-optic equipment enough to replace cheap, proven copper wiring inside a computer. In theory, fiber could also replace Ethernet cables and link entire racks of servers together.

Supercomputing: HP hybrid silicon technologies

UCSB

The Future of Hybrid Silicon Photonics

The Path to Tera-scale Data Rates

- Silicon Photonic Integrated Circuits are here with good performance (and lower cost in volume).
- Integration is essential for size, weight, power and cost reduction and improved yield and reliability
- Photonics can allow lower power and higher capacity for
 - Data Centers
 - Supercomputers
 - Sensors
 - Integrated Circuits with embedded PICs