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ABSTRACT In light of the findings of Johnson et al. that ballistic phonons with mean-free paths 

upto 500 microns carry a significant fraction of the total heat-flux in silicon at room temperature, it 

has become imperative to include ballistic transport effects in electronic and optoelectronic device 

thermal simulations even in the microscale. It would be impractical, in the short run at least, to shift 

to a fully numerical solution of the Boltzmann transport equation (BTE) for phonon transport. 

Coupling such a numerical solver with electron distributions and optical fields will be very time 

consuming, over and above the demanding computational requirements of the BTE solution itself. 

We present here an alternative, the “enhanced Fourier law”, which retains the mathematical brevity 

and simplicity of the Fourier law while including important ballistic transport effects. Rigorous 

derivation starting from the BTE lends clear physical meanings to various parameters in our 

equations, as opposed to so-called “phenomenological” models containing large numbers of 

essentially numerical fitting parameters. Two illustrative applications are considered: (a) deviations 

from the Fourier law reported by Johnson et al. using the transient gratings experiment, and (b) a 

serious difficulty in extracting the mean-free path accumulation function from frequency-domain 

thermoreflectance experiments - a difficulty that has not been pointed out until now. The enhanced 

Fourier law is expected to be of great promise to industrial device simulation because of the detailed 

information it yields about the heat-flux resolved according to the mean-free path, or in other words, 

according to the length scale of scattering. 
 

NOMENCLATURE 

 

 𝑞 = the net heat-flux. 

 𝑞𝐿𝐹 = the LF-mode contribution to the heat-flux 

 𝑞𝐻𝐹 = the HF-mode contribution to the heat-flux 

 𝑆𝐻𝐹(𝑥, 𝑡)= external heat source term 
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 𝑇  = local temperature of HF modes 

 𝑣 = group-velocity magnitude.  

 𝒗 = group velocity 

 𝒌 = LF-mode wave-vector 

 

GREEK SYMBOLS 

 

 𝜅 = the net bulk thermal conductivity  

𝜅𝐻𝐹 = the contribution of HF modes to the bulk thermal conductivity  

 𝜅𝐿𝐹 = the contribution of LF modes to the bulk thermal conductivity 

𝛬𝐿𝐹 = the MFP of the LF modes  

 𝜏  = LF mode lifetime 

𝜔(𝑘) = frequency of LF mode of wave-vector k 

 

While the phenomenological Fourier law adequately explains heat transfer in the macroscale 

(generally > 10 micron at 300 K), its applicability is seriously limited at short length-scales, due 

to its incomplete treatment of heat transport by low-frequency (LF) phonons with mean-free 

paths (MFPs) of the same order as the length scale of interest [1][2][3]. Self-heating is becoming 

an increasing concern in high-frequency and high-power electronic devices [4], and in 

optoelectronic devices [5][6]. In these devices, the length-scales are short enough that low-

frequency components of the heat-flux deviate seriously from the Fourier law, yet too long for it 

to be computationally practical to entirely abandon the Fourier law. Despite the fact that the 

Fourier law is known to dramatically overestimate the heat flux [7] due to ballistic transport, it 

continues to be used in device thermal analysis, occasionally even in cases where it is patently 

inappropriate to use (e.g. filaments a few nanometers in diameter [8][9]). It is therefore highly 

timely to develop a model that goes beyond the Fourier law, for the thermal analysis of highly 

scaled electronic and optoelectronic devices, and for enabling interpretation of transient grating 

[10], transient thermoreflectance [11] and other experiments. For such a model to permit of the 

aforementioned applications, it must (a) maintain as far as possible the mathematical simplicity 

afforded us by the usual heat equation based on the Fourier law, and (b) identify the important 

correction terms engendered by the highly non-equilibrium LF modes. We have previously 

derived such an enhanced Fourier law from the Boltzmann transport equation (BTE) [20]. 

A recent experiment by Johnson et al. [10] has revealed important information about the 

breakdown of the Fourier law in silicon at length scales much longer than expected on the basis 

of simple kinetic theory arguments [12]. Details of the transient gratings experiment can be 

found in Ref. [10]. Johnson et al. found that the grating decay rate starts deviating from the linear 

as a function of inverse square grating period – a clear indication of the breakdown of Fourier 



law - at a grating period (of the order of 1 micron) that is much larger than that expected from 

kinetic theory considerations (on the order of tens of nm). 

  

Maznev et al. [13] explained this phenomenon starting from a “two-fluid” model described later. 

However, their analysis was restricted to spatially sinusoidal dependences of variables, as was 

appropriate for the experiment under their study. Collins et al. [14] confirmed the decay rates of 

Maznev et al. by exactly solving the full spectral Boltzmann transport equation; however their 

solution was largely numerical. Another approach [15] that is used for analyzing transient 

thermoreflectance experiments assumes that the LF modes are characterized by a local 

temperature just like the high-frequency (HF) modes, which is questionable since LF modes are 

frequently far out of thermal equilibrium. 

 

Working within the two-fluid model, we have developed [20] new equations resembling the 

Fourier law for describing heat transport. To this end, we derived general expressions for the 

heat-flux and temperature by means of spherical harmonic expansions (SHEs) of the distribution 

functions for the HF and LF components. For bulk electron transport, even low-order SHE –

based BTE solutions are known to give excellent agreement with experimental results 

[16][17][18]. Our procedure results in an analytical model for heat transport that eschews the 

notion of a local temperature for the LF modes. The enhanced Fourier law reads as follows: 
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Here, the net heat-flux 𝑞= 𝑞𝐿𝐹+𝑞𝐻𝐹,𝑞𝐿𝐹= the LF-mode contribution to the heat-flux, 𝑞𝐻𝐹= the 

HF-mode contribution to the heat-flux; 𝑆𝐻𝐹(𝑥, 𝑡)= external heat source term; 𝑇 = local 

temperature of HF modes; 𝜅 is the net bulk thermal conductivity; 𝜅 = 𝜅𝐿𝐹 + 𝜅𝐻𝐹, 𝜅𝐻𝐹= the 

contribution of HF modes to the bulk thermal conductivity, 𝜅𝐿𝐹= the contribution of LF modes to 

the bulk thermal conductivity; and 𝛬𝐿𝐹= the MFP of the LF modes =𝑣𝜏 where 𝑣 is the group-

velocity magnitude of all LF modes and 𝜏 = LF mode lifetime. We assume that each and every 

LF mode has the same lifetime 𝜏, as well as the same group-velocity magnitude 𝑣. The frequency 

of an LF mode of wave-vector 𝒌, denoted by 𝜔(𝑘) is permitted to vary with 𝑘. We also assume 

isotropic phonon dispersion. 

 

We state equations for the LF mode and HF mode heat-fluxes 𝑞𝐻𝐹 and 𝑞𝐿𝐹separately: 

𝑞𝐿𝐹 =
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𝑞𝐻𝐹 = −𝜅𝐻𝐹
𝜕𝑇
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Length-scale dependence of thermal conductivity is a signature feature of nondiffusive heat 

transport. As an application exemplifying the utility of our model, we have specialized our 

equations to the spatially sinusoidal conditions of the transient gratings experiment. We have 

compared the effective thermal conductivity (ETC) of silicon versus length-scale as predicted by 

our model with the transient gratings experiment (Fig. 1), and therefrom extracted the following 



bound on the mean-free path of LF phonon modes in silicon: 𝛬𝐿𝐹 = 200 – 900 nm, with a best-fit 

value of 400 nm, consistent with [19].  

 

As another application, we study the mean-free path accumulation function (MFPAF) introduced 

by Dames and Chen [21], a powerful tool in studying ballistic phonon transport. The MFPAF at 

a given mean-free path Λ is defined as the effective thermal conductivity (ETC) of all phonons 

with mean-free paths less than or equal to Λ. The utility of the MFPAF lies in that it explains 

within a unified framework[22] diverse experiments, like the transient gratings[13], time-domain 

thermoreflectance (TDTR)[23][24] and frequency domain thermoreflectance  (FDTR)[25] 

experiments, that probe heat transport on length scales comparable to the phonon mean-free path.  

The thermoreflectance class of measurements was invented by Paddock and Easley [26]. The 

FDTR experiment is especially well suited to the determination of the MFPAF. We have shown 

that the choice of the thermal penetration depth (TPD) as the cutoff between ballistic and 

diffusive modes in FDTR experiments is intrinsically arbitrary and leads to significant error in 

the extracted MFPAF especially in the low MFP regime. The most serious source of error lies in 

that phonons with MFP equal to the TPD contribute significantly (roughly 42% at 88 MHz in 

silicon at 300 K) to the net heat-flux. Clearly, ignoring phonon modes with this MFP as fully 

ballistic (instead of quasi-ballistic) leads to erroneous conclusions about the MFPAF. 

 

We set the criterion for the cut-off as the mean-free path at which the HF-mode heat-flux 

contribution (𝑞𝐻𝐹 of Eq. (4)) drops to the point where it equals the LF-mode contribution (𝑞𝐿𝐹 of 

Eq. (3)). Fig. 6 compares the MFPAF derived from our model to that from the TPD-cutoff 

model. Our model clearly shifts the MFPAF derived from the TPD cut-off model to the right. 

This is to be expected, since quasi-ballistic phonon heat-fluxes which decay slower than 

diffusive fluxes are accounted for in our model. We note here that unlike Regner et al.[26] whose 

MFPAF extraction is based on the TPD model, our MFPAF is inconsistent with ab-initio 

calculations of Esfarjani et al. [27]. Further exploration of this discrepancy is indicated. 

With the above-mentioned capabilities demonstrated, we may expect that the enhanced Fourier 

law will adequately address the needs of next-generation device thermal simulators. 

 



Fig. 1. Comparison of the ETC with experimental data after Johnson et al. [10]. The best fit to 

experiment is obtained with LF phonon MFP 𝛬𝐿𝐹=400 nm, and 𝜅𝐻𝐹=30 W/m-K. 

 

Fig. 2: The mean-free path accumulation function; red solid curve is after Regner et al. [25]. Our 

values (blue solid curve) are shifted considerably to the right due to contributions from quasi-

ballistic LF-mode phonons. 
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