

Solenoidal Heat-Flux in Quasi-Ballistic Thermal Conduction

Dr. Ashok T. Ramu Professor Carl D. Meinhart Professor John E. Bowers University of California Santa Barbara

Materials Research Society Fall Meeting, Nov. 30 2015

Research supported by NSF under contract CMMI-1363207

The goal

- Goal: Recast the Boltzmann transport equation (BTE) into an enhanced Fourier law for accurate device thermal simulation outside Fourier law [1]
 - Fourier law: $q = -\kappa \nabla T$
 - Enhanced Fourier law:

$$\boldsymbol{q} = -\kappa \nabla T + \frac{3}{5} \kappa^{HF} (\Lambda^{LF})^2 \nabla (\nabla^2 T) - \frac{1}{5} (\Lambda^{LF})^2 \nabla \times (\nabla \times \boldsymbol{q}) + \frac{3}{5} (\Lambda^{LF})^2 \nabla (\nabla \cdot \boldsymbol{q})$$

- So what's new here compared to [2]?
 - New formulation entirely in terms of total heat-flux, and reservoir temperature
- Derived from the BTE not a phenomenological model

[1] A. T. Ramu and J. E. Bowers, *J. Appl. Phys.* 118, 125106 (2015) [2] G. Chen, *Physical Review Letters* 86, no. 11 (2001): 2297

Solenoidal heat-flux

- Identified new term in constitutive relation
- Fourier law heat-flux is curl-free
- Quasi-ballistic transport involves a divergence-free, solenoidal ('curly') term!
- Derivation from the BTE:
- [1]A. T. Ramu and J. E. Bowers, J. Appl. Phys. 118, 125106 (2015)

$$\boldsymbol{q} = -\frac{1}{5} (\Lambda^{LF})^2 \nabla \times (\nabla \times \boldsymbol{q}) + \frac{3}{5} (\Lambda^{LF})^2 \nabla (\nabla \cdot \boldsymbol{q}) - \kappa \nabla T - \frac{3}{5} \kappa^{HF} (\Lambda^{LF})^2 \nabla (\nabla^2 T)$$

Derivation from the BTE: A. T. Ramu and J. E. Bowers, J. Appl. Phys. 118, 125106 (2015)

- q= Net heat flux in both LF and HF channels Λ^{LF} =Mean-Free Path (MFP) of quasi-ballistic LF modes
- κ =bulk thermal conductivity
- κ^{HF} = reservoir (HF) mode thermal conductivity
- *T*=Temperature of HF channel

$$\boldsymbol{q} = -\frac{1}{5} (\Lambda^{LF})^2 \nabla \times (\nabla \times \boldsymbol{q}) + \frac{3}{5} (\Lambda^{LF})^2 \nabla (\nabla \cdot \boldsymbol{q}) - \kappa \nabla T - \frac{3}{5} \kappa^{HF} (\Lambda^{LF})^2 \nabla (\nabla^2 T)$$

Derivation from the BTE: A. T. Ramu and J. E. Bowers, J. Appl. Phys. 118, 125106 (2015)

- Applied to heat transport in a cylinder
- Both temperature and heat-flux needed on cylinder periphery
- Extra boundary conditions are the consequence of two-channel model and dropped terms
- 'Curly' (solenoidal) heat-flux observed in the quasi-ballistic regime

Solenoidal heat-flux

Quasi-ballistic transport is essential to the observation of the solenoidal heat-flux.

Applications

- Simultaneously confined phonons and optical modes
 - 10 GHz silicon phonon ring resonator
 - Phonon wavelength ~ 1 micron, Mean-free path ~ 10s of microns
 - Enhanced stimulated Brillouin scattering of light
- Circulating heat fluxes reduce the effective thermal conductivity![3]
 - Circulating heat-flux fails to equilibrate with lattice at the cold end
 - Potentially of great importance for thermoelectric applications

[3] Ashok T. Ramu, Carl D. Meinhart and John E. Bowers, "Circulation of the heat-flux reduces the effective thermal conductivity" (under preparation, 2015)

Reduction of effective thermal conductivity

Reduction of effective thermal conductivity

Annulus of outer diameter 2 micron, inner diameter 0.1 micron – negligible contribution from solenoidal term LF mode thermal conductivity = 60 W/m-K; LF mode mean-free path = 500 nm. HF mode thermal conductivity = 30 W/m-K

Circulation turned OFF: Hot side temperature = 300+3.24 K

Circulation turned ON: Hot side temperature = 300+5.47 K

Annulus of outer diameter 2 micron, inner diameter 1.5 micron – LARGE CIRCULATORY EFFECT LF mode thermal conductivity = 60 W/m-K; LF mode mean-free path = 500 nm. HF mode thermal conductivity = 30 W/m-K

Summary

- A new circulatory term identified in the enhanced Fourier law
- 'Curly' (solenoidal) heat-flux observed numerically in the quasiballistic regime
- Circulating heat fluxes reduce the effective thermal conductivity

Acknowledgments

- Dr. Alexei A. Maznev (Massachusetts Institute of Technology, USA) for numerous helpful discussions
- Dr. Michael Davenport (UC Santa Barbara) for useful feedback
- Funding by the National Science Foundation under project number CMMI-1363207

Thank you for your time!

If you have any questions, please contact Dr. Ashok T. Ramu at ashok.ramu@gmail.com