An Integrated-Photonics Optical-Frequency Synthesizer

Daryl Spencer

National Institute of Standards and Technology, Boulder, CO USA

NIST Travis Briles, Tara Drake, Jordan Stone, Qing Li, Laura Sinclair, Daron Westly, Robert Illic, Nate Newberry, Kartik Srinivasan, Scott Diddams, Scott Papp

UCSB Nick Volet, Aaron Bluestone, Tin Komljenovic, Luke Theogarajan, John Bowers

h Seung Hoon Lee, Dong Yoon Oh, Myoung-Gyun Suh, Ki Youl Yang, Kerry Vahala

aurrion

Martin Pfeiffer, Tobias Kippenberg

Erik Norberg, Greg Fish

Funding via DARPA DODOS project

- Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: $10^{-13} = \frac{\Delta f}{f_{carrier}} = \frac{1\mu Hz}{10MHz} = \frac{20Hz}{200THz}$

- Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: $10^{-13} = \frac{\Delta f}{f_{carrier}} = \frac{1\mu Hz}{10MHz} = \frac{20Hz}{200THz}$
 - Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery

- Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: $10^{-13} = \frac{\Delta f}{f_{carrier}} = \frac{1\mu Hz}{10MHz} = \frac{20Hz}{200THz}$
 - Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery
- Octave spanning combs allow precise definition of each comb line, and <u>transfer of stability</u> between optical and microwave domain

$$f_n = n * f_{rep} + f_o$$

• Systems have scaled down from multiple labs to benchtop systems

- Accurately producing optical signals with the long term fractional stability of a microwave synthesizer
 - Example at 1 sec: $10^{-13} = \frac{\Delta f}{f_{carrier}} = \frac{1\mu Hz}{10MHz} = \frac{20Hz}{200THz}$
 - Portable metrology, (tunable laser) spectroscopy, quantum science, and optical communications: tighter grids/ precise carrier recovery
- Octave spanning combs allow precise definition of each comb line, and <u>transfer of stability</u> between optical and microwave domain

$$f_n = n * f_{rep} + f_o$$

- Systems have scaled down from multiple labs to benchtop systems
- We aim to push SWAP+C down with integrated photonics, based on emerging microcomb technology
 - Octave spanning Si₃N₄ THz comb
 - High Q silica comb to detect f_{rep}
 - High confinement waveguide PPLN
 - Heterogeneously integrated lasers

Optical Synthesis with Microcombs

- Approach: Dual reduction gear
 - 200 THz \rightarrow 1 THz \rightarrow 15 GHz + agile tunable laser
- Leverage: Photonic integration (pump laser, PPLN, photodiodes)
 - Low power, improved frequency control, and enhanced nonlinearities

Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

Si₃N₄ resonators from NIST-Gaithersburg

10 um

Octave bandwidth with dual dispersive waves from dispersion engineering

Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

- ______1 mm
- Caltech wedge resonators
- Ultrahigh (>100M) Q
- Recently waveguide integrated

Chip-Scale Resonator Enabled Optical Synthesizer (CORES)

Integrated on the heterogeneous III/V-Si platform

Dual Kerr Microcombs

- Solitons initiated by tunable laser scan across resonance
- Need to end scan on red detuning, without appreciable resonator heating
- Fastest sweeps using IQ modulator in single sideband operation

Self-referencing Microcombs

- f_{rep} of 22 GHz silica comb is phase locked by direct microwave detection
- Beat note between 1 THz and 22 GHz combs produce error signal to phase lock THz f_{rep} stable

Self-referencing Microcombs

• 1998nm laser allows for strong second harmonic generation (SHG) and high SNR beat notes against THz comb lines.

NIST

• f_o phase locked

Heterogeneously Integrated Tunable Lasers

- Vernier tunable lasers on the heterogenous Si platform
 - III/V quantum wells wafer bonded on SOI
 - On chip SOA to compensate facet loss
- Packaged and isolated from air currents in the lab

Example: O band laser tuning map This work: C band tunable laser NIST

aurrion

Phase Locking Lasers to Resonators NIST

- Comb stability is successfully transferred to tunable lasers with <1 Hz residual stability at 1s.
- Vernier laser tuning to reach arbitrary comb line between 1530 1570 nm.
- FPGA implementation of phase frequency detector and PI²D feedback.

Absolute Tunable Laser Synthesis

Absolute Tunable Laser Synthesis

• 320 Hz laser jump with 19Hz uncertainty

Absolute Tunable Laser Synthesis

Conclusions

- First demonstration of fully stabilized octave spanning microcomb with direct self-referencing
 - Leveraged by accurate fab and dispersion engineering of Si₃N₄ THz comb
 - Phase locked to microwave signals with < 10⁻¹¹/ τ
- First demonstration of optical frequency synthesis utilizing dual microcombs
 - Ultrahigh Q silica resonator allows real time detection/stabilization of f_{rep} for both combs
 - <20 Hz error in knowing the laser's precise optical frequency
 - Laser reproduces microwave stability with < 10 $^{-11}/$ τ

daryl.spencer@nist.gov

NIST-Boulder microcomb team

