Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon

Author(s)
D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers
Publication Image
Optical microscope image to show four Fabry-Perot lasers from a cleaved laser bar.
Publication Date
Publication Type
Journal
Journal/Conference Name
Optics Express
Indexing
Vol. 26, No. 6, 7022-7033

We report the first demonstration of direct modulation of InAs/GaAs quantum dot (QD) lasers grown on on-axis (001) Si substrate. A low threading dislocation density GaAs buffer layer enables us to grow a high quality 5-layered QD active region on on-axis Si substrate. The active layer has p-modulation doped GaAs barrier layers with a hole concentration of 5 × 1017 cm3 to suppress gain saturation. Small-signal measurement on a 3 × 580 μm2 Fabry-Perot laser showed a 3dB bandwidth of 6.5 GHz at a bias current of 116 mA. A 12.5 Gbit/s non-return-to-zero signal modulation was achieved by directly probing the chip. Open eyes with an extinction ration of 3.3dB was observed at room temperature. The bit-error-rate (BER) curve showed no error-floor up to BER of 1 × 1013. 12 km single-mode fiber transmission experiments using the QD laser on Si showed a low power penalty of 1 dB at 5 Gbit/s. These results demonstrate the potential for QD lasers epitaxially grown on Si to be used as a low-cost light source for optical communication systems.

Publication File
More Research Areas
Epitaxial Growth on Si